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Abstract

Reconstructing the pose of the human hand has been an actively researched topic in

computer vision over the past decades. New devices that require more flexible and natural

input modalities than the ones used in the typical desktop setting have been developed in

the last years. Since humans usually use their hands for everyday interactions, tracking

of hand gestures seems to be a suitable candidate. But most of the time also objects in

the environment are manipulated during interaction. Especially when considering virtual

or augmented reality scenarios, joint reconstruction of the hand and the object is crucial.

Whereas there exist approaches to robustly track the motion of a single hand using a

single depth camera in real time, no such method is known for joint hand and object

tracking. Severe occlusions caused by the object and the higher dimensionality of the

problem are only few of the new challenges. In this thesis, an approach for reconstruct-

ing both hand and object motion with an RGB-D camera in real time is developed.

It combines a generative pose optimization framework with additional information ob-

tained from a discriminative machine learning algorithm in an uncertainty-aware way.

Prior knowledge that is specific to the hand and object setting, like contact point con-

straints and heuristics for regions occluded by the object, is used to deal with inherent

ambiguities of this ill-posed problem. Physical plausibility of the tracked poses is fur-

ther ensured by avoiding hand-object interpenetrations. The ability to track hand and

object motion simultaneously utilizing a lightweight single camera setup opens up many

possible applications, for example in augmented and virtual reality.
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Chapter 1

Introduction

Reconstructing the complex articulated motion of the hand has been an active topic in

research over the past decades. Whereas people used to interact with a computer via

a keyboard and a mouse for a long time, these input modalities are not suitable for

more mobile scenarios such as smart phones or smart watches. Especially new upcoming

devices, like virtual reality (VR) or augmented reality (AR) glasses where the user

should fully immerse in a virtual world, need natural and flexible input possibilities.

Because humans usually use their hands to interact with the environment, employing

hand tracking to make interactions with a virtual environment possible is a logical choice.

But even the task of tracking single hand motions is challenging. The expressiveness of

the human hand leads to a high-dimensional optimization problem that is in general

non-convex. Consequently, iterative solvers that are not guaranteed to always find the

global optimum need to be used. Performing complex poses results in self-occlusions

and ambiguities that are a lot more severe than in full body pose estimation. Additional

knowledge that is useful in full-body tracking can often not be transferred to the hand.

For example the color information that could be exploited based on clothing is less

helpful since the hand color is uniform. Furthermore, assumptions about the orientation,

like “a person is usually standing upright”, are invalid for the hand. Researchers have

developed a lot of different methods to tackle hand tracking (see Section 2.1). Some used

a multi-camera setup to deal with occlusions and ambiguities while losing flexibility

and processing speed which are both essential for interactive techniques [4]. Most of

the recent approaches tend to use a single RGB-D camera to enable adaptability for

1



2 Chapter 1. Introduction

mobile setups and real-time frame rates (≥ 30 FPS) while exploiting the extra depth

information [5, 6]. The existing approaches can be split into data-driven discriminative

learning [7, 8], generative optimization of an objective measuring similarity [9, 10] and

combinations of these two types [1, 11].

However, people are not only naturally interacting using hand gestures but also by

manipulating objects in their environment. Especially when considering AR or VR ap-

plications, reconstructing both, the hand motion and the manipulations of an object,

is necessary. Figure 1.1 shows two applications where joint tracking of hand and ob-

ject is needed to enable natural interaction of a user with the augmented or virtual

environment.
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Figure 1.1: Left: When wearing AR glasses, various interfaces can be virtually added
to simple objects. This example shows a cuboid that is overlayed with a keypad. Simul-
taneous hand and object tracking would enable to recognize which key was touched and
makes the interface look plausible in terms of position and rotation.1Right: The possi-
bility to track hands and objects in interaction enables control over a virtual character,
for example in a video game. Hence, the VR experience becomes even more immersive.

1Image “HoloLens” (https://www.flickr.com/photos/microsoftsweden/16153490837), published by
Microsoft Sweden on Flickr, licensed under CC BY 2.0 (http://creativecommons.org/licenses/by/2.0/)
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The scenario of joint hand-object reconstruction leads to new specific challenges that

come in addition to the ones already present in single hand tracking. Firstly, the al-

gorithm needs to distinguish between the hand and the object in the input. This is

a demanding task in general scenes without any assumptions like known and unique

object color and shape. Apart from the various self-occlusions in single hand pose recon-

struction, the close interaction with an object introduces heavy occlusions. Especially

when using only one or few cameras, this leads to large areas in the 3D scene for which

no input data is available. Furthermore, the estimation of the pose of the object adds

additional dimensions to the already high-dimensional pose space. While six parameters

are needed to describe the rigid transform of the object, significantly more parameters

are necessary to capture non-rigid deformations. In generative frameworks, the increase

in dimensionality yields a harder optimization problem whereas in discriminative tech-

niques it complicates training data acquisition and learning.

In comparison to the field of single hand tracking, there has been less research about

hand and object tracking (see Section 2.2). Some approaches are only able to reconstruct

the hand motion but under strong occlusions by the object [12, 13]. Others employed

multi-camera systems to overcome occlusions [14, 15]. But like in single hand tracking,

recent work is trending towards the use of a single RGB-D camera [2, 16, 17]. This

yields a more flexible and mobile setup. Nevertheless, none of these methods is able to

reconstruct the hand pose and the rigid transform of an object that is interacted with

in real time.

This work makes the following contributions to the research on joint hand and object

tracking:

• A generative pose optimization framework is combined in an uncertainty-aware

way with discriminative classification information.

• The tracking is physically plausible and remains stable under strong occlusions by

exploiting contact point constraints, heuristics for occluded areas and interpene-

tration restrictions.

• Due to a smooth mathematical representation, the algorithm runs in real time

while mostly relying on simple CPU parallelization.





Chapter 2

Related Work

The field of recognition and tracking of objects and hands has been widely researched.

There has been work on detecting and tracking single or multiple objects, including

their rigid transform and sometimes also their deformations [18–22]. Furthermore, pose

estimation of a single hand as well as tracking of more or less complicated interactions

between two hands or hands and objects have emerged as interesting topics.

2.1 Tracking of a Single Hand

Many researchers tackled the problem of tracking the articulations of a single hand. Most

of the approaches can be divided into discriminative and generative methods. Whereas

discriminative algorithms are data-driven and based on machine learning techniques,

generative tracking algorithms use a 3D model and phrase pose estimation as an opti-

mization problem over the pose parameters. Both types of approaches have individual

advantages and disadvantages. Purely discriminative methods are fast in actual tracking

but are comparably time-consuming in the training phase and the data generation in

the first place. Generalization to unseen data is a highly active research topic but yet

unsolved. Discriminative methods often do per-frame estimations, so tracking failures do

not propagate but this also leads to temporal jitter in the poses. Since hand pose estima-

tion is a complex and high-dimensional task, the corresponding problem that generative

methods try to solve is usually non-convex and hard to optimize. But careful engineer-

ing of the optimization problem ensures — in theory — that all poses can be handled.

5



6 Chapter 2. Related Work

In practice, a good starting point for the optimizer is needed in each frame to achieve

fast convergence to the global optimum. For this purpose, tracked poses from previous

frames are commonly used. That also induces temporal smoothness but makes tracking

failures more severe. In recent years, combining both aforementioned types of methods

has become more popular as these combinations might be able to overcome inherent

weaknesses of the types when used in isolation.

Discriminative. Some discriminative approaches use a database of hand poses which

reduces the pose estimation task to an indexing problem [7, 23]. Both, Wang et al. and

Athitsos et al. , rely on RGB data but the first approach runs in real time whereas the

second needs 15 seconds per frame to process. The first method requires the user to wear

a glove with a colored pattern and defines a distance metric on images of the glove to

run a nearest-neighbor search on the database. The second method does not require to

wear anything like markers or gloves and uses chamfer distance on edge images and line

matchings for indexing.

Without any markers, using RGB data for recognizing the pose of the hand is not bene-

ficial due to the uniform color of the hand. Because depth sensors are becoming cheaper

and more ubiquitous, people started to use this input cue for tracking hand motions.

Keskin et al. [8] trained random decision forests on depth input to obtain likelihoods for

joint locations. Afterwards, the maximum mode is estimated using mean shift while also

handling occluded joints. Tompson et al. [5] applied convolutional networks to depth

data to obtain heatmaps for joint locations. These are fed into an inverse kinematics

(IK) approach to get the pose of the skeleton. Latent regression forests were used by

Tang et al. [24] whereas Sun et al. [25] employed a cascaded ensemble of regressors to

obtain the hand pose parameters directly.

Generative. The first model-based generative tracker to run at 10 Hz was proposed

in 1996 by Heap et al. [26]. They used a deformable mesh model of the hand and a

single video camera to track simple motions but do not yet handle occlusions prop-

erly. Also in the field of generative hand tracking, research projects started to exploit

the depth channel when the sensors became more common e. g. through the Kinect1.

Bray et al. [27] combines particle filtering with an inbetween gradient descent step what

1Microsoft Kinect, https://dev.windows.com/en-us/kinect



Chapter 2. Related Work 7

takes 22 seconds to process a frame. Using a GPU implementation of particle swarm

optimization (PSO), Oikonomidis et al. [9] achieve 15 Hz. They follow an analysis-by-

synthesis approach, generating a depth map for a pose hypothesis and comparing it to

the given input depth. There also has been work that does hand tracking in real time.

Melax et al. [28] employ an approach that is based on physical simulation and includes

collision handling, contact constraints and joint mechanics. A low-dimensional subspace

of plausible poses, based on PCA, was used as prior and soft constraint in the work of

Tagliasacchi and colleagues [10] where they fitted a 3D hand model using registration.

Zollhöfer et al. [18] demonstrated reconstruction of hand motion as one application of

their non-rigid reconstruction algorithm for objects of any shape.

Combined. Sridhar et al. [4] use a calibrated camera setup consisting of multiple

RGB cameras and one depth sensor. They apply discriminative fingertip detection on

the depth map to obtain a complete or partial hand pose that is later on fused with the

result of a generative optimizer using a 2D Gaussian mixture representation. Because

multi-camera setups are expensive, immobile and often slow due to the pure amount of

data to be processed, methods using a more lightweight and mobile setup, like a single

depth sensor, were researched.

Some approaches use a discriminative algorithm to get an initial estimate of the hand

pose to start the generative optimizer from [11, 29]. Qian et al. [29] run a combination

of gradient-based iterative closest point (ICP) and stochastic PSO from a pose obtained

from part detections. A hierarchical distribution of hand poses is discriminatively gen-

erated by Sharp et al. [11] to launch a PSO-like optimization scheme. They optimize an

analysis-by-synthesis error measure that compares the actual depth map to the depth

map generated by the pose hypothesis. A similar objective is used by Tang et al. [6] in

their so called hierarchical sampling optimization. They optimize the pose parameters

following the structure of the kinematic skeleton. For each parameter they first sample

from a discriminatively trained regression forest and then the best parameter is propa-

gated along the kinematic chain so that in the end a complete pose is acquired. Sridhar

et al. [1] work with hand part labels that come from a random decision forest trained on

depth data. Instead of using the pose induced by the positions of the parts, they fuse

the part label information directly into the objective of the generative optimization.
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2.2 Tracking of Interacting Hands

In comparison to the tracking of a single hand, it is an even more ambitious task to track

two hands or hands and objects in interaction. In addition to the higher dimensionality of

the problem, more occlusions and ambiguities are especially challenging. Not explicitely

tackling these challenges often results in tracking failures. Therefore, employing a näıve

combination of single-hand and object-only trackers does not work (see also Section 6.3

for experiments).

No Explicit Object Motion. Approaches have been proposed that track a hand

motion in such a scenario, but not explicitly the movement of the object. Hamer et

al. [12] use a single RGB-D camera and employ a local tracker for every segment of the

articulated skeleton what helps to handle strong occlusions. They optimize by perform-

ing belief propagation on a markov random field constructed based on the kinematic

structure. In contrast to [12] — where 6.2 seconds are needed to process one frame

— the method of Romero et al. [13] runs in real time. They work with a database of

synthetic images of hand poses, occluded and unoccluded, and apply nearest neighbor

search. This search also takes the temporal pose history into account helping to avoid

temporal inconsistency that is common for pure discriminative approaches.

Hands and Objects. In contrast to single hand tracking, where the majority of

recent works use a single camera to make the methods mobile, interactive and flexible,

setups consisting of multiple RGB cameras are frequently employed for the hands and

objects case [14, 15, 30]. Oikonomidis et al. [14] jointly track the poses of the hand and

an object while modeling occlusions and physical interpenetration constraints. They

optimize edge map and skin color map similarity of the input and the rendering of the

pose hypothesis by PSO. A discriminative approach for detecting salient points, here

finger nails, is combined with a generative analysis-by-synthesis method by Ballan et

al. [15]. They take optical flow and edge maps into account and simultaneously solve for

an association of the detected salient points because it is in general ambiguous which

finger nail belongs to which finger. Wang et al. [30] also apply analysis-by-synthesis,

based on edges, silhouettes and color. They furthermore propose contact-based sampling

for the optimization: New poses are sampled considering also the contact points detected
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in the previous pose. Using this technique, it is less likely to sample implausible poses,

like floating objects.

With the use of depth sensors becoming more common, there has been recent work

on tracking interacting hands that utilizes a single RGB-D camera [16, 17]. Tzionas et

al. [16] track the motion of two hands interacting as shown in Figure 2.1. The approach

that is based on the work by Ballan et al. [15] integrates discriminatively learned salient

points with a generative model that considers occlusions and collisions. In follow-up

work, Tzionas et al. [2] extend their framework with physics simulation to jointly track

the motion of hands and an object in a physically plausible way. This computationally

expensive algorithm runs at offline frame rates. The method of Kyriazis et al. [17] is able

to track complex scenes involving two hands and multiple objects (see Figure 2.1) but

far from real time. They use an ensemble of collaborative trackers (ECT) in contrast

to a single joint tracker (JT) or a set of independent trackers (SIT). The JT tries to

optimize all parameters at the same time. It can handle interactions but is slow due

to the high dimensionality of the problem. Using an SIT means that an independent

tracker is used for each object to be tracked. There is no shared information between

the trackers what makes interactions and especially collisions hard to handle. In the

proposed ECT, information is shared regularly between the trackers. Apart from this

information the trackers are independent, so that the overall pose estimation for all

objects is comparably fast.

Figure 2.1: Top: An example of the poses that are estimated in [16]. Bottom: In this
scene, two hands and several objects (together 159 DOFs) are tracked — at a speed of

0.48 FPS [17].

In-hand Scanning. A newer topic in the hand and object tracking research field is

in-hand scanning. The goal is to reconstruct the geometry of an object that is rigidly
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moved by a hand in front of a camera, usually an RGB-D sensor [3, 31]. Paneteleris et

al. [31] start the scanning process with a known hand model and build an object model

progressively. They use the estimated fingertips that were tracked with PSO to segment

the manipulated object. This segmented region is then passed on to the object tracker

that applies ICP with the current object model. After tracking, the newly discovered

object parts are fused into the object model represented as truncated signed distance

function (TSDF). The color channel is only used for obtaining the texture of the object.

This allows for reconstruction of skin-colored objects. The whole method runs at 10 FPS

when only a single hand interacts with the object. In case of two hands, the frame rate

drops to 4 FPS. Whereas [31] only use the hand pose estimation to segment the object,

Tzionas and Gall [3] integrate this information also in the object tracking process. They

employ tracked contact correspondences for aligning the new object point cloud to the

currently built model. Having these additional features for alignment enables the method

to also handle symmetric and featureless objects.

This work aims at tracking the motion of the hand and a rigid object in real time,

under strong occlusions and in complex poses. As presented above, none of the related

research projects achieves all of these goals. Also commercial tracking systems, like the

LeapMotion [32] and NimbleVR [33], easily fail to reconstruct the motion of a hand

interacting with another hand or an object.

In this thesis, prior knowledge specific to the hand and object scenario is exploited to

guide the pose estimation. This leads to physically plausible poses and tracking that is

stable under occlusions. Discriminative object and hand part information is fused with a

generative model-based multi-proposal optimization framework while taking uncertainty

in the prediction into account. Thereby, the analytic nature of the objective is preserved

enabling the use of fast gradient-based optimizers. This makes tracking at real-time

frame rates possible.



Chapter 3

Overview

The goal of this work is to enable simul-

taneous tracking of a hand and an ob-

ject in interaction using a single close-range

RGB-D camera. Thereby, the fully articu-

lated pose of the hand as well as the rigid

transform of the object is reconstructed.

In contrast to related work — that has

achieved this goal only running far from

real time (see Chapter 2) — this approach

aims at a real-time performance. Figure 3.1

shows one of the possible setups. Note that

the camera location can be chosen arbitrar-

ily since there are no assumptions made.

RGB-D camera
articulated 

hand
rigid

object

Figure 3.1: One possible camera
setup for the approach presented in
this thesis. The 3D reconstruction is

shown live on the screen.

The algorithm estimates the pose of the hand and the object on a per-frame basis while

using a prior to softly enforce temporal consistency. A graphical overview of the steps

performed for each input frame is provided in Figure 3.2.

In the first step of the method, the input is classified on pixel-level into individual hand

parts and object pixels. This yields correspondences between the shape prior used for

tracking and the observation that are used later on. The second step is clustering of

the input. Here the input is transformed into a mathematical density representation, a

3-dimensional Gaussian mixture model (GMM) (see Chapter 4).

11
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Figure 3.2: Firstly, the input from an RGB-D camera is preprocessed, i. e. classified
in hand parts and the object and clustered. Afterwards, a model-based generative opti-
mization using two hypotheses is performed to find the pose of the hand and the object

in the current frame.

The 3D GMM representation is also used for the shape prior in the model-based pose

optimization step. Similar GMM formulations were successfully employed for tracking

tasks before, both in full body tracking [34] as well as hand-only tracking [4].

The generative pose optimization is performed by minimization of a new energy that also

incorporates terms specifically tailored to the hand-object scenario such as contact points

and occlusion contraints. Additional robustness and recovery from failures is achieved

by integrating the part label information obtained before while also accounting for the

uncertainty therein. Due to the analytical character of the GMM representation, the

energy is analytically differentiable. Hence a fast gradient-based multi-proposal optimizer

can be applied, making tracking in real time possible (see Chapter 5).

The algorithm is evaluated quantitatively and qualitatively on a new real hand-object

dataset and two publicly available datasets. Furthermore, experiments showing the sig-

nificance of single parts of the formulation are performed (Chapter 6). The thesis ends

with a conclusion and discussion of possible future work (Chapter 7).



Chapter 4

Preprocessing and Input

Transformation

The input to the algorithm is provided by a single RGB-D camera. The color and depth

image of a time step t are further denoted as Ct and Dt, respectively. To make the input

more easily manageable during pose optimization and more compact, a mathematical

representation is usually used. Based on related work from Sridhar et al. [1], this work

uses a density representation with Gaussian functions that also includes correspondence

information for the object and particular parts of the hand. This part information is

obtained from a machine learning classification algorithm. The remainder of this chapter

explains how the classification is performed and how the input frame Ft = (Ct,Dt) is

transformed to a Gaussian mixture model (GMM).

4.1 Hand and Object Classification

The goal of the classification in this work is to obtain a per pixel label that indicates

that this pixel belongs either to the object or to one of six hand parts. The possible

classes with corresponding colors for the images shown here are:

• palm (red),

• thumb (purple),

• index finger (yellow),

• middle finger (green),

• ring finger (cyan),

• little finger (dark blue)

• and object (pink).

13
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The whole classification algorithm consists of two preprocessing steps, namely viewpoint

selection and object segmentation, and a two-layered random decision forest (RDF) as

main classifier (see Figure 4.1).

front

backlittle

thumb

depth

color

Viewpoint selection Color-based object  Two-layer hand part classification  Final hand part
segmentation classification

Figure 4.1: First, a viewpoint is selected based on the pose tracked in the previous
frame. Then, the color frame Ct is used to segment out pixels belonging to the object.
After removing the object pixels from the depth image Dt, it is passed to an RDF that
classifies in the first step hand vs. arm pixels and then different hand parts. The final

result combines information about hand parts and the object.

4.1.1 Viewpoint Selection

The viewpoint selection determines from which of four sides the hand is seen in the

current frame Ft. The four possible viewpoints are front, back, thumb side and little

finger side and are distributed equidistant around the hand.

side view

top view

front

back

thumb

little

back

little

thumb

Figure 4.2: An example for the view-
point selection based on the pose
tracked in the previous frames and
the viewpoint vectors (black). As the
thumb vector is pointing in the oppo-
site direction of the camera viewing di-
rection (blue), it minimizes the cosine

objective.

Note that additional viewpoints, e. g. top or

bottom, could be integrated but are omitted

here because they occur rarely in the tested

camera setups. When the camera is placed

for example in a smart watch, a bottom view-

point might become necessary. For the view-

point selection step, the tracked hand pose

from time step t − 1 is used instead of the

input from the camera. Each possible view-

point is represented by a vector in the local

coordinate system of the hand as shown in

Figure 4.2. Together with the global pose of

the hand from time t− 1, these vectors can

be transformed to the global coordinate sys-

tem.
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Since also the normalized camera viewing direction v̂c is known in this coordinate system,

the best matching viewpoint can be determined as

arg min
i∈{front, back, thumb, little}

cos(∠(v̂c, v̂i)) ,

where v̂i is the normalized vector in global coordinates that represents viewpoint i. This

viewpoint selection scheme is based on the assumptions that at least the global position

and rotation of the hand have been tracked correctly in the previous frame and that the

motion between two frames is small.

4.1.2 Object Segmentation

The goal of this step is to decide for each pixel if it is part of the object or not. Because

the object color is assumed to be known and sufficiently distinct in the image, the color

input Ct is used. For each pixel p, it is checked if the color value lies in the object color

range and the label is assigned accordingly:

if Ct(p) ∈ δHSV then object else non-object ,

where δHSV is the predefined range of the object color in HSV color space. The HSV

color space is preferable because hue and brightness are better seperable than e. g. in

the RGB space. This makes the thresholding in situations with varying lighting easier.

4.1.3 Two-Layered Hand Parts Classification

All pixels that are in the foreground and were not classified as object in the object

segmentation step before are further processed. They are passed on to one of four random

decision forests, based on the viewpoint that was selected for the current time step t.

One such forest operates only on the depth image Dt and consists of two layers as

illustrated in Figure 4.3. The first one performs per pixel classification into hand and

arm. The decision is obtained by majority vote over the trees. All hand pixels are then

classified as individual hand parts, i. e. palm, thumb, index finger, middle finger, ring

finger or little finger, by the second layer of the forest.
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Each forest is trained on 38 000 exam-

ples. The accuracies for the random decision

forests used in this thesis on a disjoint test

set are: 60% for front, 65% for back, 61% for

little and 54% for thumb.

Note that the classification result also in-

cludes uncertainty. Each leaf node of a tree

does not only represent a single class but

rather a class distribution where the class

with highest confidence determines the final

label. These distributions are (amongst oth-

ers) learned when training the RDF. Sum-

ming up the histogram of the reached leaf

node over all trees and computing the aver-

age yields the final histogram. An example

of such a class histogram is shown in Fig-

ure 4.3. The histograms are normalized so

that they sum up to 1.

The result of the whole per-pixel classifica-

tion algorithm is an image Ht with the same

size as Dt that stores a class histogram for

each pixel. Pixels that were assigned the ob-

ject label have a histogram with confidence

1 in the object class. The bottom left part

of Figure 4.4 shows an image where the best

class per pixel from Ht is color-coded.

0 %

30 %

60 %

Confidence

Hand vs. Arm

Hand Parts

hand pixels

Figure 4.3: From top to bottom: the
depth pixels from Dt are processed by
the hand-arm forest. All pixels that are
classified as belonging to the hand are
passed on further to the hand part for-
est. Each leaf node in a tree stores
a class histogram that represents the
confidence for each class. In this exam-
ple, the confidence is high that a pixel
that reaches this leaf corresponds to

the middle finger.

4.2 Building the Input GMM

As mentioned before, a Gaussian mixture model is used as input representation for the

pose estimation algorithm. A general formulation for such a GMM is given by a sum of

Gaussian functions
N∑
i=1

Gi(x;µi, σi) ,
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where in this work the isotropic Gaussians are specified by mean µ and standard devi-

ation σ.

As a first step when building the input GMM, the depth input Dt is clustered using

bottom-up quadtree clustering.

Starting from single pixels, four

neighboring quad regions of the

same size are clustered to a bigger

quad region. The clustering for a

quad region is stopped either if it

reaches the maximum size of 8 by

8 pixels or if the depth difference

in the quad would become larger

than the depth difference thresh-

old εd in the next step. Choosing

εd = 30 mm yields a good trade-

off between processing speed and

geometric detail. Each quad qD

in the final quadtree that belongs

to the foreground is then trans-

formed into a 3D Gaussian.

Figure 4.4: Top left: A quad (orange) result-
ing from depth-based quadtree clustering. All
pixels contained in the quad and therefore also
the corresponding 3D points have a similar depth
from the camera (up to εd). Bottom left: A vi-
sualization of the highest confidence classes for
the above input. The matching quad (white) can
be found at the same image location. Right: Us-
ing the camera intrinsics, the centers of the quads
can be converted to 3D points in the coordinate
system of the camera. Around these points, a 3-

dimensional GMM is built.

The standard deviation σ is set to half the backprojected side length of the quad. The

mean µ ∈ R3 is obtained by backprojecting the center of the quad — from which

the 2D image coordinates and the corresponding depth is known — using the camera

intrinsics. Because only the front-facing surface is observed in the depth image Dt, the

mean after backprojection is positioned on the surface in 3-dimensional space. But since

in the GMM the surface should coincide with the Gaussian’s isosurface at one standard

deviation from the mean, the mean µ is further shifted by σ away from the camera.

Furthermore, the Gaussian includes semantic part information taken from the histogram

image Ht. As shown in Figure 4.4 (left), a quad qH in Ht (here marked white) that

corresponds to the quad qD in Dt (marked orange) can be found easily considering that

both images share the same intrinsics and extrinsics. For fusing the part information over

the whole quad, all the per-pixel histograms are summed up by summing the confidence
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values for each class separately. To obtain a normalized histogram — where the class

confidences sum up to 1 again — the summed histogram is divided by size(qH).

The right half of Figure 4.4 illustrates the final result of the transformation to the

input GMM. So in contrast to previous work by Sridhar et al. [1] that used so called

2.5D Gaussian mixtures, the input representation here is a proper 3D Gaussian mixture

model

I(x) =

NI∑
i=1

Gi(x;µi, σi) , (4.1)

where NI is the number of input Gaussians and each Gi is a 3-dimensional Gaussian

with mean µi ∈ R3 and standard deviation σi ∈ R. The Gaussian mixture for the whole

input can be divided into a hand and an object part based on the best class for each

Gaussian

I(x) = Ih(x) + Io(x) =

NIh∑
i=1

Ghi (x;µi, σi) +

NIo∑
j=1

Goj(x;µj , σj) . (4.2)

Here {Ghi (x;µi, σi)}i is the set of hand input Gaussians with cardinality NIh and

{Goj(x;µj , σj)}j is the set of object input Gaussians with cardinality NIo . Note that

NIh +NIo = NI holds.
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Tracking

The input in the 3D Gaussian representation is used in a generative proposal-based

optimization framework to obtain the pose parameters for the hand as well as the rigid

transform of the object. A model of the hand together with the object, also in 3D GMM

representation, is known to the tracker. The optimization is performed by minimizing

an energy which is a function in the pose parameters Θ. Thereby, the GMM formulation

allows for analytical derivatives which makes fast gradient-based solvers applicable.

5.1 Model Representation

The model used for the hand is a kinematic skele-

ton with 26 degrees of freedom (DOFs), where 6

parameters determine the global position and rota-

tion and 20 parameters correspond to joint angles

— 4 per finger. The distribution of the joints is

visualized in Figure 5.1.

Only rigid objects are used in this work hence

the pose of the object is fully determined by the

6 DOFs for global position and rotation. Conse-

quently, the tracker is optimizing a total of 32 pa-

rameters jointly for obtaining the hand and object

pose. The method can be easily generalized to more

than one object as shown in Section 6.8.

Figure 5.1: The locations
of the joints in the hand
is shown here as blue dots.
Light blue dots indicate
joints with one DOF whereas
dark blue dots belong to

joints with two DOFs.

19
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But the computation time per frame increases with increasing number of DOFs. Besides

primitive objects like cuboids or cylinders, also more complex objects can be tracked.

Such results are presented in Chapter 6. For allowing a better comparison to the input

that is encoded in a 3D Gaussian mixture model after preprocessing, also a 3D GMM

for the model is built.

Figure 5.2: Top: The
kinematic skeleton of
the hand and a cube rep-
resented using its faces.
Bottom: The 3D GMM
of hand and object. The
colors indicate different

parts.

For the hand, 3-dimensional Gaussians are rigidly at-

tached to the kinematic skeleton as already done in [4].

They are positioned such that the surface coincides with

the Gaussians at one standard deviation around the

mean. Based on this assumption, the surface of the ob-

ject is represented with 3-dimensional Gaussians. So the

model can be mathematically described as a 3D Gaus-

sian mixture model

M(Θ,x) =

NM∑
i=1

υiGi(x;µi, σi) ,

where NM is the number of model Gaussians and

υi ∈ [υlow, 1] is the visibility weight for model Gaussian

i. This weight is needed because only camera facing sur-

faces have corresponding Gaussians in the input GMM.

The influence of occluded parts of the model is lowered

by υi since there is no correspondence in the input.

The visibility weights are computed before the pose optimization of each frame based

on the tracked pose from the previous frame. υi is set to the maximum of the percental

occlusion of model Gaussian i and the lower limit υlow. Choosing this lower limit > 0

ensures that also parts that are predicted to be fully occluded can still move. This can

help in situations where the motion between consecutive frames is large and the visibility

prediction is therefore not correct.

In analogy to the input Gaussian mixture (cf. Equation 4.2), a GMM for the part of the

model representing the hand, Mh, and a GMM for the object part of the model, Mo,

can be defined. Here, NMh
and NMo denote the numbers of Gaussians used to model

the hand and the object, respectively. The transition from the hand skeleton and the

spatial extent of the object to the 3D GMM is depicted in Figure 5.2. The same parts

that are utilized in the classification of the input (cf. Section 4.1) can be annotated for



Chapter 5. Tracking 21

the model Gaussians. These model part labels are used for a semantic comparison to

the input during pose optimization.

5.2 Energy Formulation

The best pose parameters for the hand and the object are found by minimizing an energy

that measures discrepancy between the model in the current pose and the input. Because

this is a highly ill-posed problem, especially when only a single camera is used, the energy

also includes some regularizers that correspond to reasonable prior assumptions about

the tracked motion. Some of these assumptions are specific to the hand and object

scenario. The full energy is composed from the following energy terms. The effect of

different terms is evaluated in Section 6.7.2.

5.2.1 Spatial Alignment

The spatial alignment term Ea as shown in Equation 5.1 is the main data term. It

measures the squared difference between the input 3D GMM and the model 3D GMM

for the current pose hypothesis Θ, for both hand and object. This difference is integrated

at every point over the whole 3D domain.

Ea(Θ) =

∫
Ω

(Ih(x)−Mh(Θ,x))2 + (Io(x)−Mo(Θ,x))2 dx (5.1)

The integral in Ea has a closed form solution. For the computation please see Section B.1

in the appendix. Furthermore, the spatial alignment term can be put into relation with

parts of the objective introduced by Sridhar et al. [1]. But in contrast to the objec-

tive proposed here, they only work with 2D Gaussians and an additional depth value,

a so-called 2.5D representation, leading to a non-continuous formulation. Additional

computations and comparisons are demonstrated in Appendix A and in Section 6.7.1.

Figure 5.3 presents the intuition about spatial alignment between two 1D Gaussian

functions. The concept can be easily lifted to higher dimensions.
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Figure 5.3: Graphical example for the spatial alignment term using 1D Gaussians. The
difference between the two Gaussians is illustrated as yellow area. Since this difference
is squared and integrated over the whole domain, the energy value on the left is lower
than the value on the right. That matches the visual intuition about spatial alignment.

5.2.2 Label Alignment

Since finding correspondences between the input and the model is in general hard, the

previous chapter (more specifically Section 4.1) introduced a classification method for

hand parts and the object. Output of this method are per-pixel histograms representing

the class confidence distribution that are clustered together with the input depth Dt.

Instead of using the so found correspondences in an inverse kinematics (IK) approach as

hard constraints, the label alignment term El, stated in Equation 5.2, softly incorporates

the part histograms.

El(Θ) =

NI∑
i=1

NM∑
j=1

αi,j · ||µi − µj ||22 (5.2)

For evaluating the label alignment, every pair of an input and a model Gaussian is

considered. The distance between them should be minimized if the highest confidence

class li of the input is equal to the class label lj of the model Gaussian. Thereby also the

confidence pi for li has to be taken into account: a higher confidence should yield stronger

attraction forces. Furthermore, a pair of Gaussians is discarded if they are farther apart

than the maximal interaction range rmax. Assuming the tracking of the previous frame

to be correct, this helps to eliminate classification outliers. All this is realized in the
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following weight

αi,j =


0 if (li 6= lj) or (di,j > rmax)

(1− di,j
rmax

) · pi else

,

where di,j is the distance between input Gaussian i and model Gaussian j.

5.2.3 Anatomical Plausibility

The first general prior term is concerned with anatomical plausibility. For the human

hand it applies that fingers cannot be stretched or bent over a certain limit. These joint

limits have been empirically measured in user studies [35] and can be described by a

vector of lower limits Θl and a vector of upper limits Θu. Since there is no hard constraint

for these limits in the kinematic skeleton, they are softly enforced by the following term

Ep(Θ) =
∑
θj∈Θ


0 if θlj ≤ θj ≤ θuj

(θj − θuj )2 if θj > θuj

(θj − θlj)2 if θj < θlj

. (5.3)

As soon as either the lower or upper joint limit for a DOF is exceeded, a penalty in

the form of the squared deviation is added to the energy. Using a soft constraint makes

tracking of extreme poses possible, e. g. when someone has significantly more flexible

fingers than the average, if there is strong evidence in the input.

5.2.4 Temporal Smoothness

The second general prior penalizes temporally non-smooth pose changes. This energy

term is based on the assumption that the parameter variation of consecutive frames is

similar. As shown in Equation 5.4, the difference between the current pose gradient and

the pose gradient of the previous frame is penalized.

Et(Θ
(t)) = ||∇Θ(t) −∇Θ(t−1)||22 (5.4)

Note that the superscripts t, t−1, t−2 refer to the current and the previous time steps,

respectively, and are used here for disambiguation. The pose parameter variation ∇Θ
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is approximated using first-order finite backward differences. One can reformulate Et

employing this approximation which yields

Et(Θ
(t)) = ||(Θ(t) −Θ(t−1))− (Θ(t−1) −Θ(t−2))||22

= ||Θ(t) − 2 ·Θ(t−1) + Θ(t−2)||22 . (5.5)

The underlying assumption of similar pose changes for successive points in time seems to

be reasonable for tracking natural hand motion as presented e. g. in [13]. The temporal

smoothness term avoids high-frequency jitter in the tracked result.

5.2.5 Contact Points

Although joint tracking of the hand interacting with an object introduces new challenges

and intensifies challenges known from single hand tracking, specific knowledge about the

scenario can be exploited for achieving this goal. During natural interaction, the human

hand usually grabs or holds the object. This leads to contact between — at least — the

fingertips and the surface of the object. The contact points term Ec tries to preserve

these touch constraints once detected until there is enough evidence that the touch was

released. For this purpose, a set of contacts T is maintained. The elements of T are

triples (f, j, dT ) where f is the fingertip identifier, j is the unique identifier of the object

model Gaussian that is touched and dT is the so-called touch distance.

µj µf

�f�j

Figure 5.4: A fingertip Gaussian
(right, yellow) is touching an object
Gaussian (left, pink). One can see that
the length of the vector connecting the
means is equal to the sum of the stan-

dard deviations.

Note that the Gaussian mixture models for

the hand and the object were built satisfy-

ing the invariant that the surface coincides

with the isosurface of the Gaussians at one

standard deviation from the mean. There-

fore, as depicted in Figure 5.4, a fingertip

touches a point on the object if and only if

the distance between the means of the cor-

responding Gaussians is equal to the sum

of the standard deviations.

Hence, a pair of fingertip Gaussian f and object Gaussian j with touch distance dT =

σf +σj is added to T if their distance ||µf−µj ||2 lies inside the respective touch distance

interval [dT −εT , dT +εT ] (εT > 0). For a more detailed description of variants to update
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T see Section 5.2.8. For a given set of contact points, Ec penalizes deviations from the

touch distance for each element of T as follows

Ec(Θ) =
∑

(f,j,dT )∈T

(
||µf − µj ||22 − d2

T
)2

. (5.6)

Preserving the detected contact points may seem rigorous. But experimental results (see

Chapter 6) show that careful balancing between the energy terms lets the data term take

over when the evidence that the contact was released is strong enough.

5.2.6 Object Occlusion

Similar to the contact points term, the object occlusion term Eo tries to exploit infor-

mation about the hand-object-scenario to guide the pose estimation to more plausible

poses.

A hard challenge that is prominent to the single camera setup are occlusions. Whereas

in single hand tracking mostly self-occlusions have to be handled, joint tracking of hand

and object motion needs to be robust to frequently occuring occlusions of the hand

caused by the object. In the following, object occlusion refers to this specific kind of

occlusion. Because there is no data in occluded regions, some prior assumption for such

regions is necessary to stabilize the tracking. In this work, it is assumed that occluded

hand parts move rigidly with the closest non-occluded ancestor in the kinematic chain.

Only global translation and rotation of the hand is always possible. A value ρi ∈ [0, 1]

can be computed for every hand model Gaussian i that measures percental occlusion

by the object as observed from the camera. Therefore, the Gaussian representation for

the model as shown in the bottom part of Figure 5.5 and the camera intrinsics are

used. ρi = 0 corresponds to no occlusion and ρi = 1 to a fully occluded Gaussian. This

continuous occlusion factor controls how strong the rigid movement with the nearest non-

occluded ancestor is enforced. Note that ρi is computed on the volumetric representation

of hand and object, the GMM. To connect the factors to the rigidity of hand parts, a

mapping to the DOFs of the kinematic skeleton is needed. Thus, hand model Gaussian i

is put in relation with the DOFs that directly affect this Gaussian, the so-called parent

DOFs. These DOFs are described by the set Hi. The top part of Figure 5.5 visualizes

the parent DOFs of Gaussians with high ρ -values in red.
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Figure 5.5: Left: An example pose of the GMM model as seen from the camera. The
pink cylinder object Gaussians occlude huge parts of the index and the middle finger.
Right: The skeleton and the cylinder object in the same pose as above. The DOFs of
the hand that directly influence the severely occluded finger Gaussians are marked in

red.

The aforementioned concepts are integrated in the energy as

Eo(Θ) =

NMh∑
i=1

∑
j∈Hi

ρi · (θj − θsavedj )2 . (5.7)

The soft constraint that hand parts should adapt to the rigid motion of non-occluded

ancestors is realized by penalizing deviation from a saved value for DOF θj . So based

on the value ρi, the parent DOFs are more or less significantly disabled. For saving

the reference values Θsaved different schemes can be employed. Details are described in

Section 5.2.8.

5.2.7 Interpenetration Avoidance

Although the object specific terms Ec for contact points and Eo for object occlusion

relate the hand to the object, the main data term — the spatial alignment term Ea

— does not. This can be seen from Equation 5.1 by splitting the sum under the inte-

gral. Therefore, a regularizer is necessary to prevent the hand and the object part of

the model from interpenetration. When such an interpenetration happens, the affected

object model Gaussians from Mo and the affected hand model Gaussians from Mh are

very close, i. e. their spatial overlap is high. The overlap of two Gaussians can be mea-

sured by integrating the product over all points in the 3D domain. Generalizing this

to Gaussian mixture models leads to the following formulation for the interpenetration
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avoidance term

Ei(Θ) =

∫
Ω

Mh(Θ,x) · Mo(Θ,x) dx . (5.8)

Because interpenetration should also be avoided in occluded regions to obtain a physi-

cally plausible pose, the visibility weights υi are ignored for Ei. This is a legitimate step

since Ei does not compare against the input GMM that represents only parts that are

visible from the camera.

5.2.8 Per-Frame Constraints vs. Constraint Propagation

The contact points T for Ec as well as the reference DOF values Θsaved for Eo need to

be available before the pose optimization for the current time step t is started.

Per-Frame Constraints. The local approach determines these constraints on a per-

frame basis using the tracked pose from the previous frame t − 1, here denoted as

Θ(t−1). Before starting the actual pose estimation, Θsaved = Θ(t−1) is set. Thus, if hand

Gaussians are occluded by the object, their parent DOFs θj are penalized for deviations

from the previous DOF value θ
(t−1)
j . Such a constraint is reasonable in cases where θ

(t−1)
j

is plausible for the occluded hand part. But when parts are occluded for a longer period

of time, it is possible that these parts drift away from the reference they had when the

occlusion began. This happens because the deviation sums up over the frames without

increasing the penalty. Similar issues can be encountered when the contact points in T

are recomputed at each frame. Whereas the touch of a fingertip might have started at

a specific object Gaussian, the contact correspondence might be shifted to one of the

neighbors due to small jitter in the tracking. In other situations, e. g. when the object is

touched and the finger is then slided over the surface, the per-frame recomputation is

desirable because it makes tracking of such motions possible.

Constraint Propagation. A more global approach is to update the constraints when

the contact or the occlusion starts happening and to propagate this information across

consecutive frames until the contact is released or the occlusion is gone. So for a DOF θj ,

the reference value is set when the occlusion value ρi of the directly attached Gaussians

becomes larger than an occlusion threshold ρ̂. This saved DOF value is then fixed and
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propagated until the occlusion drops below ρ̂. For DOFs corresponding to only lightly

occluded Gaussians (ρi < ρ̂), the references are again saved per-frame. This is based on

the assumption that θ
(t−1)
j is a plausible reference because there was enough evidence

in the input. Propagating the reference for highly occluded regions over frames reduces

drifting. For the contact constraints T , an element is added when the touch is first de-

tected. This contact correspondence between fingertip f and object Gaussian j is kept

and propagated until the distance ||µf − µj ||2 exceeds a threshold dT . By choosing dT

larger than the distance to the neighboring Gaussians, the touch correspondence to j is

not lost when the fingertip shifts slightly due to jitter. Only one correspondence per fin-

gertip at the same time is possible in this version. Otherwise multiple contact constraints

to not neighboring Gaussians could be accumulated over frames yielding the mean of all

constraints as the optimum. As already pointed out in the previous paragraph, tracking

of touch and slide motions is hard if the contact points are not recomputed per frame.

When the constraint propagation over frames is used, such motions can only be tracked

if the evidence in the input is strong enough to pull the fingertip away from the saved

contact point.

Since there are advantages and disadvantages for both variants, they are further dis-

cussed and evaluated for the contact points term Ec and the object occlusion term Eo

in Chapter 6.

5.3 Gradient-Based Multi-Proposal Optimization

The generative optimizer is proposal-based, i. e. multiple pose hypotheses are maintained

during optimization of a single frame. In this work, two proposals are used that also have

a different objective to minimize, respectively. One proposal corresponds to the energy

Edepth (see Equation 5.9) that does not include any information from the discriminative

part classification. The second proposal optimizes Elabel (see Equation 5.10) in which this

additional knowledge is included. It has been shown in previous work, e. g. by Sridhar et

al. [1], that a split like this can be beneficial. Especially in situations where the classifi-

cation result is bad, considering a hypothesis that is independent from this information
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avoids tracking failures.

Edepth(Θ) = Ea + wpEp + wtEt + wcEc + woEo + wiEi (5.9)

Elabel(Θ) = Ea + wlEl + wpEp + wiEi (5.10)

Whereas the depth proposal uses all regularizers and hand-object specific energy terms

that have been introduced in this section, some of the terms are excluded for Elabel.

Because the label proposal should help to recover from tracking failures, the temporal

smoothness assumption is dropped. Furthermore, the object occlusion and the contact

points term are ignored out of similar reasons: DOFs disabled due to occlusion and

contact constraints for fingertips should not prevent motion according to correspon-

dences found via the classification algorithm. Additional experiments on the employed

multi-hypotheses strategy are provided in Chapter 6.

The optimization is performed by step-size-adaptive gradient descent that is initialized

with the winner pose from the previous time step t−1. Since both Edepth and Elabel have

analytical gradients with respect to the pose parameters Θ, the algorithm runs in real

time without using GPU acceleration. A comprehensive computation of the gradients

is included in Appendix B. The gradient descent is stopped if either a fixed number of

iterations is reached or the gradient vanishes. Let the final poses after the optimization

for the proposals be denoted as Θ∗depth and Θ∗label. To determine which of these two poses

better explains the input, they are compared using a comparison energy Ecomp that is

defined as

Ecomp(Θ) = Ea + wpEp + wiEi . (5.11)

To make the comparison as unbiased as possible, all regularizers except the anatomical

plausibility and the interpenetration avoidance are ignored. So the pure spatial alignment

of the found poses to the input is crucial for the decision. To enable fast recovery also

from smaller errors, the label pose Θ∗label is slightly preferred, based on the factor λ > 1.

Thus, the winner pose is given as

Θ∗ =


Θ∗label if Ecomp(Θ

∗
label) < λEcomp(Θ

∗
depth)

Θ∗depth otherwise

. (5.12)
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Evaluation and Discussion

This section describes various experiments and tests carried out to evaluate the perfor-

mance of the presented hand and object tracking approach. These include, for example,

evaluation on a newly captured and annotated dataset (Section 6.4), comparisons on

two publicly available datasets (Sections 6.5 and 6.6), qualitative results with different

users, objects and camera locations (Section 6.8) and results showing the significance of

several algorithm parts (Section 6.7).

6.1 Captured Sequences

To evaluate the performance of the approach proposed in this work, several challenging

sequences showing a hand interacting with an object have been recorded.

The objects vary in size and shape as

one can see in Figure 6.1. For eas-

ier color segmentation of the object

(see Section 4.1.2), all objects used

in the captured sequences have the

same dark green color. Note that also

non-primitive shapes and objects with

different and multiple colors can be

tracked as long as the colors are unique

in the foreground of the scene.

Figure 6.1: The primitive objects used
for the evaluation (from left to right):
LongCuboid, Cylinder, Cube and Short-
Cuboid. Note that also different shapes are
possible and the color does not need to
be green as shown amongst others in Sec-

tions 6.5 and 6.6.

31
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This capability is presented on different datasets (see Sections 6.5 and 6.6) and in live

captures (see Section 6.8). All following sequences have been captured with an Creative

Senz3D at a frame rate of 30 Hz for both depth and color stream.

6.1.1 Annotated Dataset Dexter++

Six of the captured sequences have been manually annotated and form the new bench-

mark dataset Dexter++. The sequences show interactions of the left hand with the Short-

Cuboid and the LongCuboid objects performed by two different subjects (one female, one

male). In contrast to other datasets that only provide ground-truth annotations for the

hand, e. g. Tzionas et al. [2], Dexter++ has fingertip as well as cuboid annotations for

more than 3000 frames. The sequences consist of various complex articulated motions

and severe occlusion situations:

• Occlusion (Subject 1, ShortCuboid, 353 frames):

The hand is static in the same pose for the whole sequence while the cuboid is

moved in front of the hand yielding heavy occlusions.

• Rigid (Subject 1, ShortCuboid, 530 frames):

The second longest edge of the cuboid is held between thumb and index finger and

the hand moves rigidly. The pose of hand and cuboid is affected by large positional

and rotational changes.

• Pinch (Subject 2, ShortCuboid, 457 frames):

The hand is turned sideways and holds the long edge of the cuboid between thumb

and index finger. Middle finger and ring finger pinch on the cuboid repeatedly.

• Rotate (Subject 1, ShortCuboid, 797 frames):

The short edge of the cuboid is held between thumb and index finger. The cuboid is

rotated sideways and moved up and down. Towards the end, the cuboid is grasped

with the whole hand.

• Grasp1 (Subject 1, ShortCuboid, 355 frames):

The hand is seen from the back grasping the cuboid with thumb and index finger.

It is rotated and put down again.
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• Grasp2 (Subject 1, LongCuboid, 747 frames):

The hand is seen from the back, grasping the cuboid multiple times. The cuboid

is rotated by 90◦ in each grasp. The sequence ends with a full grasp (using all

fingers).

Figure 6.2 displays example depth and color images for each sequence including anno-

tated points. For the cuboid, three corners on the largest face are annotated in a fixed

order: start in one corner, proceed along the longest edge, then proceed along the second

longest edge. Note that these three points together with the position and viewing direc-

tion of the camera fully determine the rigid transform of the cuboid. If none of the two

largest faces is visible, no ground truth for the cuboid can be provided for this frame.

Similarly, there is no ground truth for occluded fingertips. Qualitative and quantitative

results on Dexter++ are presented in Section 6.4.

Figure 6.2: Characteristic examples for depth and color input for each of the Dexter++
sequences. The depth image is shown color-coded where blue indicates close pixels and
magenta indicates pixels that are farther away. In addition, the depth map includes the

annotations for the fingertips and three cuboid corners in green.

6.1.2 Additional Sequences

More sequences have been captured but not annotated. These sequences show interac-

tions with other objects or interactions that are hard to annotate manually due to their

high complexity.
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• ThrowCube: The Cube is swinging on a thread and is caught with the hand.

• Cylinder : The Cylinder is grasped and lifted from a table producing severe occlu-

sions of the fingers.

• Complex : Some highly complex motions, similar to pen spinning, are performed

with the ShortCuboid.

The qualitative performance of the algorithm on these sequences is demonstrated in

Sections 6.7.2 and 6.8.

6.2 Runtime and Parameters

All experiments were performed using an Intel Xeon E5-1620 CPU with 16 GB of RAM

and an Nvidia GeForce GTX Titan X GPU. The main part of the algorithm is paral-

lelized on the CPU using OpenMP. Only the classification using random decision forests

runs in parallel on the GPU. Overall, the implementation achieves real-time performance

of 25–35 Hz. The stages of the proposed hand and object tracking method take: 3 ms for

preprocessing, 3.5 ms for RDF classification, 2 ms for clustering and building the input

GMM, 20–30 ms for proposal-based optimization. The variation in the latter is mostly

due to the varying number of Gaussians in the models for different objects. The use of

propagated constraints vs. per-frame constraints (see Section 5.2.8) does not noticeably

change the processing speed.

When running the algorithm in the configuration for tracking a single hand — i. e. the

contact point constraints, the object occlusion handling and the interpenetration avoid-

ance are disabled — only 12 ms are needed for the multi-proposal pose optimization on

average. This yields a frame rate of 50 Hz for single hand tracking.

All weights and parameters for all energy components were determined empirically on

the Dexter++ dataset. The weights are: wl = 3 · 10−7, wp = 0.1, wt = 0.1, wc = 5 · 10−7,

wo = 1.0, wi = 3 · 10−7. The additional parameters were chosen as:

• minimum visibility for model Gaussians υlow = 0.15

• label alignment: maximal interaction range rmax = 250 mm
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• contact points: touch threshold εT = 5 mm, touch release distance dT = 20 mm

(propagated version)

• object occlusion: occlusion threshold ρ̂ = 0.75 (propagated version)

6.3 Are Separate Hand and Object Trackers Sufficient?

A first interesting question is whether joint hand and object tracking is necessary given

that there are plenty of fast and robust hand-only and object-only tracking approaches

as presented in Chapter 2. Already Kyriazis et al. [17], for example, found out that the

performance is worse when using separate independent trackers since there are no mutual

constraints incorporated in the tracking. Especially in situations with heavy occlusions,

knowledge about both, the hand and the object, improves the tracking results.

To support this claim, the state-of-the-art hand tracker of Sridhar et al. [1] is evaluated

on the Occlusion sequence from the new Dexter++ dataset. Using separate trackers for

the hand and the object relies on the assumption that accurate hand-object segmentation

is available. To ensure this, all object pixels are removed from the depth map by setting

their value to infinity before running the hand tracker.
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Figure 6.3: Top: The original input depth images. Note that the object pixels are
removed for the hand tracker of Sridhar et al. [1]. Middle: Results achieved by the joint
hand and object tracking approach proposed in this thesis. The occluded fingers remain
stable because the pose of the object from the previous frame is known and the new
pose of hand and object is optimized jointly. Bottom: Qualitative results of the hand
tracker of Sridhar et al. The tracking of the fingers is not stable under occlusion. Note
how the fingers snap towards the remaining depth pixels of the palm because there is

no information about the object.
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The results are presented in Figure 6.3, together with the results achieved by this work

for comparison. Whereas the joint hand-object approach tracks correctly, the method of

Sridhar et al. fails.

6.4 Evaluation on Dexter++

The proposed method for simultaneous tracking of hand and object pose is evaluated

on the new dataset Dexter++.

Error Measure. The frames from the dataset provide ground-truth annotations for

all visible fingertips and for three corners of the cuboid. The average 3D position error in

millimeters is computed over all backprojected annotated points and the corresponding

tracked positions.
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Figure 6.4: Left: Average error and standard deviation per sequence of the Dexter++
dataset. The exact number is displayed on the right. The average error over all sequences
is indicated by the dark blue line. The error for Pinch is lowest whereas the error for
Rotate is highest but still close to the average. Right: Consistency curves for the best
(Pinch) and the worst (Rotate) sequence together with the average consistency curve
over all sequences. On average, an error < 15 mm is achieved on ca. 40% of the frames.
For the best sequence, such a low error is obtained on almost all frames (> 95%), but

on the worst sequence this holds only for 20% of the frames.

Figure 6.4 (left) displays the average frame error per sequence. Over all sequences, the

total average error is 15.73 mm. The average fingertip error (15.63 mm) is slightly

lower than the error of the object (16.20 mm). Since the average error is not stable to

outliers, the right part of Figure 6.4 visualizes the consistency of the tracking accuracy.

This plot shows the percentage of frames (y-axis) that achieved an error below a certain

threshold (x-axis). Qualitative results on all six sequences are shown in Figure 6.5.
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Figure 6.5: Qualitative results for all Dexter++ sequences. The top row shows color
input frames and the bottom row depth input together with overlaid tracking results
(green for hand and pink for object), respectively. Note how the tracking remains sta-
ble under occlusions and how natural grasps are reproduced using contact point and

interpenetration avoidance constraints.
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6.5 Evaluation on IJCV hand-object interactions

Tzionas et al. recently proposed a tracker for hands in interaction [2]. Their dataset

includes sequences with a single hand, two interacting hands and one or two hands ma-

nipulating an object rigidly or nonrigidly. They also provide their tracked hand motions

for comparison. Because the approach in this thesis is not able to cope with nonrigid mo-

tion of the object, the performance is only evaluated on the sequences including a rigid

object. There are six such sequences, from which five have ground-truth annotations for

the hand:

• Ball1 : Number 15 in dataset. A blue ball is moved with one hand from a raised

platform to a lower platform.

• Ball2 : Number 16 in dataset. A blue ball is moved with two hands from the lower

to the raised platform.

• Ball1 Occ: Number 19 in dataset. A blue ball is moved with one hand from the

lower to the raised platform. The thumb is occluded by the ball.

• Cube: Number 20 in dataset. A Rubik’s Cube is moved with one hand from the

lower to the raised platform.

• Cube Occ: Number 21 in dataset. A Rubik’s Cube is moved with one hand from

the lower to the raised platform. The thumb is occluded by the cube.

• X1 : Number X1 in dataset, without annotations. A blue ball is moved with one

hand from the raised platform to the palm of the second hand and from there to

the lower platform.

All sequences were captured at 30 Hz using a Primesense Carmine 1.09 short-range

structured-light RGB-D camera.

Error Measures. Ground-truth annotations are only provided for the hand. There-

fore, the quantitative evaluation is limited to the accuracy of the hand pose estimation.

The joints that are used for the evaluation are depicted in Figure 6.6. Two error measures

are computed for all annotated frames:
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• 2D pixel error (in px):

The average distance between the annotated

pixel and the projection of the tracked joint

position into the depth image over all fingers

of the right hand.

• 3D position error (in mm):

The average distance between the backpro-

jected annotated position and the tracked

joint position over all fingers of the right

hand.

Figure 6.6: The joints (in
cyan) used for the quantita-
tive comparison to Tzionas

et al.

Figure 6.7 shows quantitative results for the five annotated sequences. Overall, the error

of the method presented in this thesis is 7.9 px (2D) and 8.4 mm (3D) whereas the

approach of Tzionas et al. achieves 6.0 px and 8.0 mm. These differences lie within the

variance of manual annotation. In comparison to Tzionas et al. who use computationally

expensive physics simulation, this work runs more than 60 times faster while obtaining

similar results. Qualitative results for visual comparison are provided in Figure 6.8.

Furthermore, Figure 6.9 shows qualitative results from the X1 sequence.
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Figure 6.7: Left: The average errors in 2D and 3D for all sequences. The exact
numbers are displayed in the boxes on the right. All 2D errors (top) lie below 10 px and
almost all 3D errors (bottom) below 10 mm. The difference in performance between
this work and Tzionas et al. [2] is slightly larger for the 2D error metric. On Ball1 and
Cube, Tzionas et al. perform significantly better in 2D but only slightly better in 3D.
Overall, the algorithm from this thesis achieves lower average error on one sequence
using the 2D metric and on two sequences using the 3D metric while running more
than 60 times faster. Right: Consistency plots as introduced in Section 6.4 for the 2D
and 3D error metric over all sequences. Similarly to the average errors (left), one can
see that the discrepancy between the trackers is larger in the 2D metric (top). Here
the consistency curve of Tzionas et al. [2] is always above indicating more frames with
lower error. But for the 3D metric, the curve of this work is above until a threshold of
ca. 7 mm, showing that there are more frames that are tracked very accurately. Overall,
both methods track all frames with an error lower than 15 px (2D) and 15 mm (3D).
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Figure 6.8: Qualitative results on the annotated sequences presented as overlay with
the colored input point cloud. The approach presented in this thesis (top row in green
and light blue, respectively) and the method of Tzionas et al. [2] (bottom row in
turquoise, respectively) achieve similar visual quality although the latter runs offline
and the first in real time. Note that this work can only track one hand for the Ball2
sequence but the tracking remains stable even though a second hand is present in the
input. The capability of tracking objects with multiple colors is also demonstrated by

tracking the Rubik’s Cube.

3D View
Projected View

Figure 6.9: Qualitative results (in green and light blue) on the X1 sequence from
Tzionas et al. [2]. In the projected view, the colored input depth image is overlaid with
the projected tracking result. The bottom row shows the corresponding 3D view of the
colored point cloud and the tracking result for the hand and the object. In this view,
one can see that the ball is tracked accurately on the palm of the second hand although

it is partially occluded by the fingers.
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6.6 Evaluation on ICCV in-hand scanning

Even though the work on in-hand scanning by Tzionas and Gall [3] solves a different

problem, the performance of the hand and object tracking approach from this thesis can

be evaluated on their sequences.

The data was captured using a Primesense Carmine

1.09 short-range structured-light RGB-D camera.

Error Measures. On this dataset, two error met-

rics similar to the ones used for IJCV hand-object in-

teractions (see Section 6.5) are employed. Ground-

truth annotations are provided for the outermost

joint of the thumb and the index finger as depicted

in Figure 6.10. Therefore, the corresponding 2D and

3D error measures consider only these two fingers

instead of all fingers as introduced in Section 6.5.

Figure 6.10: The outer-
most joint of the thumb and
the index finger (in cyan)
are annotated for the in-
hand scanning sequences of

Tzionas and Gall.

The ICCV in-hand scanning dataset consists of four sequences where a large bottle,

a bowling pin, a small bottle and a ball are turned by a hand in front of a camera.

In addition, the hand motion tracked by the hand tracker used by Tzionas and Gall

for in-hand scanning is available. A quantitative comparison with this hand tracker is

presented in Figure 6.11. Note that they use the output from the hand-only tracker

as additional constraints to a KinectFusion-style approach [36, 37] to reconstruct the

shape of the object. Therefore, they do not have a joint reconstruction of hand and

object motion to show in a qualitative comparison. Similar to the results on the IJCV

hand-object interactions dataset, the quantitative discrepancy between the trackers is

larger in the 2D metric. The method from this thesis — that runs at real-time frame

rates — achieves an average error of 8.67 px while the hand tracker of Tzionas and Gall

improves on this result with 5.42 px while running offline. Considering the 3D error

measure, the results are almost interchangeably close given the noise in the sensor and

the annotations: 10.92 mm for this work and 10.20 mm for Tzionas and Gall.
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Figure 6.11: Left: Average error per sequence for both methods using the 2D (top)
and the 3D (bottom) error metric. The exact errors in numbers are provided on the
right. In the 2D metric, the offline approach of Tzionas and Gall achieves a lower error
on all four sequences. But similar and even equal results are obtained when using the
3D measure. When comparing the performance of [3] relative to this work in both
metrics, one can see that it is significantly worse in 3D, especially on the Small Bottle
and the Ball sequence. For Small Bottle, this work performs slightly better in 3D and
for Ball, the errors are at least a lot closer. Right: Consistency plots for both methods
over all four sequences. In the 2D metric (top), the curve of Tzionas and Gall is always
above. They achieve an error < 5 px on a larger percental amount of frames. Both
approaches track all frames with less than 15 px error. When the 3D error measure
is used (bottom), the curve of this work is above until ca. 8 mm what indicates that
more frames are tracked very accurately. For both methods, the error is < 20 mm for

all frames.

Figure 6.12 shows qualitative results on the four sequences. These results demonstrate

that also objects with more complex shapes can be modeled in the Gaussian represen-

tation and can be tracked by the method presented in this thesis.
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Figure 6.12: Qualitative results on the in-hand scanning sequences from Tzionas and
Gall [3]. The top row shows color input frames and the bottom row tracking results
in the Gaussian representation overlaid with the colored projection of the point cloud,
respectively. Note that different grasps with thumb and index finger are accurately

reconstructed by the tracker.
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6.7 Evaluation of Algorithm Design

In this section, the importance and significance of different parts of the algorithm design

and the energy are discussed. In a first step, the improvement provided by using 3D

Gaussian mixture models is demonstrated. Afterwards, a detailed analysis of the energy

is performed by incrementally enabling particular parts or using different variants of the

terms.

6.7.1 Significance of 3D Formulation

In contrast to related hand-only tracking work by Sridhar et al. [1] that uses a 2.5D

Gaussian mixture representation for the input and the evaluation of the energy, this

work employs 3D Gaussians. Whereas the 3D Gaussians are smooth and continuous

over the whole 3D space, the 2.5D representation is not: the 2D Gaussians are only

continuous and smooth in a two-dimensional subspace at a certain depth but do not

have any spatial extent in the third dimension.

As one can see from Appendix A,

the spatial alignment term Ea

(Equation 5.1) is equivalent to

the overlap and the collision

term used by Sridhar et al. [1] up

to a linear transform. To deter-

mine the improvement provided

by the 3D representation, the

performance of the 3D approach

is evaluated on the hand-only

dataset Dexter [4]. Therefore, all

object-specific terms (Ec, Eo and

Ei) are disabled so that the re-

maining energy terms are a sub-

set of the terms used by Sridhar

et al. [1].
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Figure 6.13: The consistency curves for the 3D
formulation (blue) lie above the ones for Sridhar et
al. [1] (green) for the best and the worst sequence
and on average. This means that for more frames
a lower error has been achieved. Until a threshold
of ca. 15 mm, the average curve for this work lies
above the best curve of Sridhar et al. This indi-
cates that even on average over all sequences, the
3D formulation obtained more frames with an er-
ror < 15 mm than the 2.5D formulation on its

best sequence.

The quantitative results demonstrate an improvement from 19.6 mm to 17.1 mm aver-

age fingertip error when using the approach from this thesis. The 3D formulation yields
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a lower error on 4 out of 7 sequences and has a higher percentage of frames with low

error. The runtime for the hand-only version (see Section 6.2) is equal to the runtime

of Sridhar et al. More detailed results and consistency plots are shown in Figures 6.13

and 6.14.
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Figure 6.14: The average fingertip error for each sequence together with the standard
deviation. The exact errors per sequence are displayed in the boxes on the right. The
dark blue and green lines indicate the average error over all sequences for the 3D
formulation and the approach from Sridhar et al. [1], respectively. The first outperforms
the latter on 4 out of 7 sequences. The improvement is largest on flexex1, where the

error is roughly cut in half.

6.7.2 Effect of Different Energy Parts

Apart from the 3D Gaussian mixture model formulation, this work introduces a new

multi-layered classification pipeline for the object and hand parts and various new energy

components specific to the hand and object tracking scenario. To determine the influence

of each part, the performance of the tracker is evaluated in six configurations where steps

of the algorithm are added incrementally:

1. Depth Only : single proposal that optimizes spatial alignment, anatomical plausi-

bility and temporal smoothness.

2. without Viewpoints: second proposal in addition to Depth Only that uses spatial

alignment, label alignment and anatomical plausibility. The discriminative part

information comes from a single RDF that is trained on data from all viewpoints.
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3. with Viewpoints: same energy as without Viewpoints but the discriminative part

information comes from the full classification pipeline as discussed in Section 4.1.

4. with Object Terms: two proposals as in with Viewpoints. In addition, the depth

proposal uses the contact points and the object occlusion term.

5. with Propagated Object Terms: same energy as in with Object Terms but the prop-

agated versions of the contact points and the object occlusion term are optimized.

6. with Interpenetration Avoidance: two proposals as in with Propagated Object Terms.

Additionally, both proposals use the interpenetration avoidance term.

All versions are quantitatively evaluated on the Dexter++ dataset. The results in Fig-

ure 6.15 show that there is a significant improvement from variant 1 to 3 and from 2 to

3. Afterwards, the changes are negligible due to sensor noise and uncertainty of manual

annotation. Interestingly, using no discriminative part information at all performs better

on average than using a single RDF without viewpoint selection.
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Figure 6.15: Left: The average error over all sequences from Dexter++ for the six
discussed variants. The exact numbers are displayed on the right. Whereas the error
is higher for Depth Only and without Viewpoints, there is no significant quantitative
change when adding contact points, object occlusion and interpenetration avoidance.
Right: Consistency plots for all six presented versions. Similar to the average errors
(left), there is no significant difference between the variants 3-6. The curves for Depth
Only and without Viewpoints are worse. The first achieves a lower percentage of frames
for all thresholds. The latter has a similar amount of low error frames (< 15 mm), but

medium error frames (20–30 mm) are lacking.

Although the difference in numbers is small for some configurations, the visual quality

and plausibility differs noticeably. The remainder of this section shows qualitative com-

parisons of different variants of the approach that illustrate the advantages of additional

terms.
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Significance of Label Alignment Term El and Viewpoint Selection. As already

shown in related work (see Chapter 2), combining discriminative pose estimation and

generative tracking approaches can improve robustness, accuracy and the ability to

recover from tracking failures. Figure 6.16 shows results on the Pinch sequence from

the Dexter++ dataset tracked with variants Depth Only (1) and with Viewpoints (3).

For the latter, the pose is tracked correctly whereas tracking partially fails for the first

variant and does not recover afterwards.
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Figure 6.16: Left: Visual comparison between Depth Only and with Viewpoints. For
the first, the tracking of the little finger is lost while the latter variant tracks correctly.
Right: The per-frame average error (y-axis) is plotted for the frames of the Pinch
sequence (x-axis). Note that the error for Depth Only (red) remains high over the whole
sequence in comparison to with Viewpoints (blue) which indicates that the tracker does

not recover from the failure.

In contrast to recent work, e. g. [1],

which uses a single random decision

forest trained on data from multi-

ple viewpoints, the method in this

thesis selects one out of four specifi-

cally trained random decision forests

based on the best-matching view-

point. This procedure reduces the

classification complexity in each for-

est and allows to train on more data

overall. Figures 6.17 and 6.18 show

the quantitative and qualitative im-

provements of using multiple forests

and viewpoint selection compared to

a single forest combining all view-

points.
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Figure 6.17: Consistency plots for the vari-
ants with Viewpoints and without Viewpoints
on the Grasp1 sequence. While the first
achieves an error lower than 20 mm on 80% of
the frames, the latter obtains such a low er-
ror only for roughly 27% of the frames. Apart
from these frames, there are a lot of frames
with error > 30 mm as one can see from the
steep increase (from ca. 30% to more than

80%) between 30 mm and 40 mm.
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Figure 6.18: Comparison of the variant without Viewpoints (top) and with Viewpoints
(bottom) on the Grasp1 sequence from the Dexter++ dataset. When employing only
a single RDF that is trained on multiple views, the tracking fails for all fingers (except
the thumb) and in the end also for the object. The quality of the tracking is better

when using viewpoint selection and multiple RDFs trained on distinct viewpoints.

Significance of Object-Specific Terms Ec and Eo. When adding the object spe-

cific terms for contact points and object occlusion handling, the quantitative error does

not improve significantly.

Nevertheless, these two terms ensure

qualitatively better and more plau-

sible results in situations that occur

frequently. For a more detailed evalu-

ation, the version with Object Terms

is further split here: Figure 6.19

shows results when only the contact

points term Ec is added and the im-

provement provided by only adding

the object occlusion term Eo is pre-

sented in Figure 6.20. The contact

points term increases the stability of

the object while it is held in the hand.

The object occlusion term keeps oc-

cluded fingers stable whereas they

move nondeterministically in case of

missing data if this term is not used.

w
ith

ou
t C

on
ta

ct
 

Po
in

ts
 T

er
m

w
ith

 C
on

ta
ct

 
Po

in
ts

 T
er

m
Co

lo
r I

np
ut

Figure 6.19: From the color input (top),
one can see that the Cube is held statically
in the hand. Tracking results for the version
with Viewpoints (middle row) and with Ob-
ject Terms where only Ec is added (bottom
row) are shown overlaid on the depth input.
When using the contact points term Ec, the

orientation of the object is more stable.
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Figure 6.20: Comparison of the versions with Viewpoints (middle row) and with Object
Terms with only Eo added (bottom row) on the Cylinder sequence. The color input
(top row) is provided for reference and the tracking results are overlaid on the depth
input. While the middle finger remains stable under occlusion when the object occlusion

term is enabled, it moves implausibly without this term.

In comparison to these results, the difference between the propagated version and the

non-propagated version of the contact points term and the object occlusion term is more

subtle. Because the same reference value — either the contact point or the saved value

for the occluded DOF — is usually kept for a longer period of time, temporal jitter is

further removed. This adds additional stability to the fingers and the object. Figure 6.21

shows a qualitative comparison that illustrates this difference between the variants with

Viewpoints, with Object Terms and with Propagated Object Terms.
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Figure 6.21: Analysis of tracking stability for six consecutive frames of the Pinch
sequence where the cuboid is not moved. The tracking results are overlaid on the depth
image. The red dashed line indicates the constant position of the cuboid for reference.
When using no object terms at all (top row, cyan boxes) the cuboid moves noticeably
above (frames 2 and 6) and below the line (frame 4). With the non-propagated object
terms (middle row, blue boxes), such an error happens only once (frame 4). The prop-
agated versions of the contact points and the object occlusion term resolve this jitter

entirely.

Significance of Interpenetration Avoidance Term Ei. Although the use of the

interpenetration avoidance term Ei does not significantly improve the average error,

it helps to produce more plausible tracking results. As demonstrated on the Grasp2

sequence in Figure 6.22, it can happen that fingers interpenetrate the object when Ei

is missing. This is physically impossible and running the tracker with all steps enabled,

the version with Interpenetration Avoidance, avoids such results.
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Figure 6.22: Qualitative comparison of the variants with Propagated Object Terms
(top) and with Interpenetration Avoidance (bottom) on Grasp2. When the cuboid is
grasped in the first variant, the fingers get stuck inside the object. Using interpene-
tration avoidance between the hand and the object leads to a plausible reconstruction

where the fingers are lying on the surface of the cuboid.

6.8 Further Qualitative Evaluation

This section demonstrates more qualitative results from simultaneous tracking of a hand

and an object using the approach presented in this thesis.

Figures 6.23 and 6.24 show track-

ing results on the additional cap-

tured sequences Complex and

ThrowCube. These illustrate that

the method is capable of recon-

structing fast and complex inter-

actions. The real-time runtime al-

lows to show live captures like

in Figure 6.26 where the tracking

result is rendered on the screen

while the motion is performed.

Co
m

pl
ex

Figure 6.23: Qualitative results on the Com-
plex sequence. Even unusual motions can be

tracked since the framework is generative.
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Figure 6.24: Qualitative results on the ThrowCube sequence. Note that the cube is
moving so fast that motion blur is present in the input. Nevertheless, the rigid trans-
form of the cube is reconstructed. Also the catching hand is tracked without interpen-
etrating the object. A natural grasp with physically plausible hand-object contacts is

reproduced.

Tracking results from an egocentric viewpoint are shown in Figure 6.25. This setup is es-

pecially relevant for augmented or virtual reality applications. The results in Figure 6.26

exhibit several achievements of the approach like tracking different users and objects with

different colors, tracking in the presence of multiple objects in the foreground, as well

as generalization to track more than one object.

Figure 6.25: Tracking results from an egocentric viewpoint. The tracking is stable
despite the cluttered background.
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Figure 6.26: Live capture results from four different subjects (1 female, 3 male). The
results show stability under severe occlusions, robustness to the presence of multiple
hands or objects in the foreground, the ability to track differently colored and shaped
objects and generalization to track multiple objects (bottom left). Top: The real-time
reconstruction of the motion is displayed on the screen and also in a zoom on the right
in pink (object) and orange (hand). The 3D Gaussian representation of the input is
shown in green. Bottom: The tracking result in green (hand) and light blue (object)

is presented overlaid on the depth input on the screen.
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6.9 Limitations

The presented approach achieves robust and accurate simultaneous tracking of a hand

and an object in interaction in many scenarios, although it also has limitations:

• Motions under occlusion:

While prior terms like the object occlusion term Eo enable the method to deal

with globally rigid motion of the occluded area, tracking can fail if the assumption

of rigidity is violated. The discriminative part information often ensures recovery

as soon as the previously occluded part is visible again. Better priors for motion

under occlusion, for example priors that consider the relation between different

fingers, could lead to improvement.

• Very fast motion:

Since several parts of the algorithm use the previously tracked pose, e. g. for ini-

tialization of the pose optimization or for the computation of visibility weights,

temporal coherence between frames is important. If motions are performed too

fast, tracking might fail, but is usually able to recover when the movement slows

down. Faster cameras together with a faster implementation of the main algorithm

(e. g. using a GPU) increase temporal coherence in the input.

• Failure of color segmentation:

The simple HSV color segmentation can at least partially fail when used for exam-

ple with specular objects. Since the main data term Ea (see Equation 5.1) relies

on a good hand-object segmentation in the input, tracking quality decreases. A

more sophisticated segmentation approach could help to overcome this limitation.

• Very complex objects:

The results in this chapter demonstrate the ability to track objects like a bowling

pin, and in theory every object can be modeled given an unlimited number of

Gaussians. Nevertheless, the number of model Gaussians influences the processing

time per frame. All objects tracked in the evaluation consist of at most 72 Gaus-

sians. Tracking of an object that is modeled using several hundreds of Gaussians is

currently not possible in real time. Parallelization on the GPU can help to reduce

the processing time.
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Figure 6.27 demonstrates situations where the tracking partially fails due to different

reasons.

Figure 6.27: Top left: The middle finger has performed a complex motion while
being partially occluded by the cuboid. The tracking was lost when the finger became
occluded. Top right: While the tracking is stable in many occlusion situations, it can
fail when important parts like the palm become fully occluded. Bottom: Whereas a
second hand in the input is in general not a problem for the approach, single fingers
might be wrongly attracted if they come too close to the other hand for a longer period

of time.





Chapter 7

Conclusion and Future Work

This thesis presented an approach for simultaneous reconstruction of the motion of a

hand and an object in interaction. The method uses input from a single commodity

RGB-D sensor, works for objects of different shape, size and color and is the first to run

at real-time frame rates. It generalizes to different users and camera locations while even

allowing tracking of more than one object. Extensive evaluations showed comparable

performance to state-of-the-art offline approaches, robust tracking on a new annotated

hand and object dataset and live capture results. The experiments concerning algorithm

design verified the effect of different components and illustrated the improvement by

exploiting hand-object specific prior knowledge.

There are many possibilities for future work based on this thesis. One idea is to ex-

periment with other machine learning techniques, like convolutional neural networks or

boosting, to improve the accuracy of the classification. Additionally, training a classifier

for the hand-object segmentation task might be useful as color segmentation is inher-

ently dependent on lighting conditions and is error-prone when using non-diffuse objects.

The optimization framework in this thesis already works with two proposals from which

one is independent of the classification result to avoid failures due to bad classification.

Furthermore, a quality measure for the classification result could be constructed to lower

the influence of the corresponding energy term if the quality is detected to be bad. Such

quality measures could involve entropy or noise in the part label image or the num-

ber of clusters per class. Also learning such a measure from examples of good and bad

classification should be possible in general.

61
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Another related problem is the construction of a user-specific surface model of the hand.

Given enough scans from human hands, a principal component analysis could yield a

low-dimensional subspace that captures most of the hand variations. For each user,

the hand shape can then be optimized in this subspace to obtain a model that is more

accurate than the 3D Gaussian approximation. Having such a user-adapted surface hand

model could improve hand and object tracking because some energy terms — like contact

points and interpenetration avoidance — are dependent on the location of the surface

of the hand. While the current Gaussian model offers simple scaling, it is far from the

accuracy of a proper surface model.

A natural extension of this work is the tracking of hands manipulating an articulated or a

deformable object. This task is more challenging since there is a higher number of degrees

of freedom for the object. Moreover, the Gaussian representation in the current form is

too coarse to accurately track deformations. A surface or a volumetric representation like

a mesh or a signed distance function have already been successfully used for deformable

objects (e. g. by Zollhöfer et al. [18]).



Appendix A

Data Term Equivalence

In contrast to Sridhar et al. [1] where only 2D Gaussian mixture models with extra depth

information (so called 2.5D GMMs) are used, this work uses a 3D Gaussian mixture

representation for the input and hence also in the energy. Despite this difference, it can

be shown that the main data term — the spatial alignment term Ea — in general is

equivalent to parts of the objective of [1] up to a constant and an additional factor. In

the following, only the hand part of Ea is considered since Sridhar et al. only track a

single hand. Simple computations lead to a sum consisting of three parts:

∫
Ω

(Ih(x)−Mh(Θ,x))2 dx

=

∫
Ω

I2
h(x) dx− 2 ·

∫
Ω

Ih(x) · Mh(Θ,x) dx +

∫
Ω

M2
h(Θ,x) dx

=

∫
Ω

I2
h(x) dx− 2 ·

NI∑
i=1

NM∑
j=1

∫
Ω

Gi(x)υjGj(x) dx

︸ ︷︷ ︸
model-image-part

+

NM∑
i=1

NM∑
j=1

∫
Ω

υiGi(x)υjGj(x) dx

︸ ︷︷ ︸
model-model-part

,

where the parameterization of the Gaussians is dropped for better readability. The first

term is a constant w.r.t. Θ, i. e. not relevant in the pose optimization. The second term,

the model-image-part, is up to the normalization constant 1
E(CI ,CI) , the visibility weight

υi and the distance cutoff factor ∆(p, q) equivalent to the depth similarity term from
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Sridhar et al.

Esim(Cp, CI) =
1

E(CI , CI)
∑
p∈Cp

∑
q∈CI

∆(p, q)

∫
Ω

Gp(x)Gq(x) dx ,

where CI and Cp are the 2.5D GMM for the input and the projected model, respectively.

The third term is again up to a normalization constant 1
E(Ch,Ch) and the visibility weights

υi equivalent to a term from Sridhar et al. , the collision penalty

Ecol(Θ) =
1

E(Ch, Ch)

∑
p∈Ch

∑
q∈Ch,
q>p

∫
Ω

Gp(x)Gq(x) dx ,

where Ch is the 3D GMM for the model. Note that Ecol cosiders every pair of two model

Gaussians only once and does not consider the pair (p, p) since this is a constant and not

depending on Θ anyway. This introduces additionally an implicit factor 2 and a constant

between Ecol and the model-model-part of Ea.

In total, the there is a strong relation between the spatial alignment term Ea and the

similarity and collision term from Sridhar et al. [1]. Up to several constants and con-

stant factors as well as the use of the 2.5D representation in Esim, they can be seen as

equivalent.
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Gradients

An advantage of the GMM representation is that the gradients of the energy terms

w.r.t. the pose parameters Θ can be computed analytically. This makes the gradient-

based optimization fast and enables the tracking algorithm to run in real time. In this

chapter, an analytical expression for the gradient of each of the energy terms as intro-

duced in Section 5.2 is derived.

B.1 Spatial Alignment Term Ea

The differentiation for the two summands of Ea (see Equation 5.1) works completely

analogous. The derivation is shown here for the hand part

∫
Ω

(Ih(x)−Mh(Θ,x))2 dx .

As derived in Appendix A, this is equal to

∫
Ω

I2
h(x) dx− 2 ·

∫
Ω

Ih(x) · Mh(Θ,x) dx

︸ ︷︷ ︸
model-image-part

+

∫
Ω

M2
h(Θ,x) dx

︸ ︷︷ ︸
model-model-part

.

The first summand here is independent of the pose parameters Θ, so it will vanish in

the derivative. Both, the model-image-part and the model-model-part are integrals over

a product of weighted Gaussian mixtures. In the next step, the derivative of such a term
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in general,

∫
Ω

GA(x) · GB(x)dx =

N1∑
i=1

N2∑
j=1

wAi w
B
j

∫
Ω

GAi (x;µi, σi) ·GBj (x;µj , σj)dx︸ ︷︷ ︸
=: Si,j

,

is computed. This boils down to finding an analytical expression for the derivative of

Si,j since the weights are assumed to be constant. Note that this holds for the visibility

weights υi in the concrete case because they are set to a fixed value before the opti-

mization for each frame starts. As explained in [38], an integral over a product of two

un-normalized anisotropic Gaussians is given as:√
(2π)d|ΣiΣj |√
|Σi + Σj |

exp

(
−1

2
(µi − µj)

T (Σi + Σj)
−1(µi − µj)

)
.

Here, the dimension d = 3 and the Gaussians are isotropic what leads to:

Si,j =
(2π)

3
2 (σ2

i σ
2
j )

3
2

(σ2
i + σ2

j )
3
2

exp

(
−
||µi − µj ||22
2(σ2

i + σ2
j )

)

Therefore, the k-th component of the gradient is given as:

∂ Si,j
∂ θk

=
∂ Si,j
∂ z

· ∂ z

∂ θk
where z := µi − µj

= Si,j ·

(
− z

σ2
i + σ2

j

)
· ∂ z

∂ θk

= −
(2π)

3
2 (σ2

i σ
2
j )

3
2

(σ2
i + σ2

j )
5
2

exp

(
−
||µi − µj ||22
2(σ2

i + σ2
j )

)
· (µi − µj) ·

∂(µi − µj)

∂ θk︸ ︷︷ ︸
µ-difference derivative

Whereas the whole derivation for the model-image-part and the model-model-part of the

energy term was the same until this point, the µ-difference derivative differs between

them.

• model-image-part: only µj , that belongs to a Gaussian in the GMM M for the

model, is influenced by the pose parameters Θ. Therefore

∂(µi − µj)

∂ θk
= −

∂ µj
∂ θk

. (B.1)
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• model-model-part: here both, µi and µj , are influenced by the pose parameters Θ.

Hence
∂(µi − µj)

∂ θk
=
∂ µi
∂ θk

−
∂ µj
∂ θk

. (B.2)

Note that these simple µ-derivatives can be computed using the kinematic structure of

the model. This yields the full gradient for the spatial alignment Ea.

B.2 Label Alignment Term El

As a first step of finding the gradient for the label alignment term El (see Equation 5.2),

the derivative operator can be dragged inside the summation. For the computation of

the gradient, αi,j is treated as a constant w.r.t. Θ. Afterwards, the chain rule is applied.

∂ El(Θ)

∂ θk
=

NI∑
i=1

NM∑
j=1

αi,j ·
∂ ||µi − µj ||22

∂ θk

= 2

NI∑
i=1

NM∑
j=1

αi,j · (µi − µj) ·
∂(µi − µj)

∂ θk︸ ︷︷ ︸
see Equation B.1

The only part that still needs to be computed is again a µ-difference derivative. In this

case, it is equal to the model-image version as provided in Equation B.1 because El only

considers pairs of one image and one model Gaussian.

B.3 Anatomical Plausibility Regularizer Ep

Since the anatomical plausibility regularizer Ep as given in Equation 5.3 is a sum over

all DOFs in Θ, only a single term remains in each component of the gradient.

∂ Ep(Θ)

∂ θk
=


0 if θlk ≤ θk ≤ θuk

2(θk − θuk ) if θk > θuk

2(θk − θlk) if θk < θlk
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B.4 Temporal Smoothness Regularizer Et

The gradient of the temporal smoothness regularizer Et is computed w.r.t. the approxi-

mation introduced in Equation 5.5.

∇Et(Θ(t)) = ∇||Θ(t) − 2 ·Θ(t−1) + Θ(t−2)||22

= 2 · (Θ(t) − 2 ·Θ(t−1) + Θ(t−2))

B.5 Contact Points Term Ec

For computing the gradient of the contact points term Ec (see Equation 5.6), the deriva-

tive operator is firstly dragged inside the sum. Then, the substitution z := µf − µj is

applied.

∂ Ec(Θ)

∂ θk
=

∑
(f,j,dT )

∂ (||µf − µj ||22 − d2
T )2

∂ θk

=
∑

(f,j,dT )

∂ (||z||22 − d2
T )2

∂ z
· ∂ z

∂ θk
where z := µf − µj

=
∑

(f,j,dT )

2(||z||22 − d2
T ) · (2 z) · ∂ z

∂ θk

= 4
∑

(f,j,dT )

(||µf − µj ||22 − d2
T ) · (µf − µj) ·

∂ (µf − µj)

∂ θk︸ ︷︷ ︸
see Equation B.2

After re-substituting, one can spot that the only remaining derivative is again a µ-

difference derivative. Since Ec is considering pairs of two model Gaussians — namely

one hand and one object Gaussian — the model-model version from Equation B.2 can

be used here.

B.6 Object Occlusion Term Eo

Also for the gradient of the object occlusion term Eo (see Equation 5.7), the derivative

operator can be dragged inside the summation. For the k-th component of the gradient,

all terms in the sum that are associated with Gaussians that are not directly influenced
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by θk vanish. Therefore only the terms corresponding to Gaussians with parent DOF k

remain.

∂ Eo(Θ)

∂ θk
=

∑
i∈ ch(k)

ρi ·
∂ (θk − θsavedk )2

∂ θk

= 2
∑

i∈ ch(k)

ρi · (θk − θsavedk )

where ch(k) = {i | 1 ≤ i ≤ NMh
∧ k ∈ Hi} is the set of all Gaussians directly affected

by θk.

B.7 Interpenetration Avoidance Term Ei

The interpenetration avoidance term is similar to the model-model-part of the spatial

alignment term Ea as derived in Section B.1. The only differences are that the visibility

weights are not included in Ei and that the product is computed between two different

parts of the model, namely hand and object, instead of the same part. Because the

derivative of an integral over a product of weighted Gaussian mixtures has been deter-

mined in general in Section B.1, the same computation applies here. The µ-difference

derivative in the case of Ei always occurs in the model-model-version as introduced in

Equation B.2.
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