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A B S T R A C T

Hands are one of the main enabling factors for performing complex
tasks and humans naturally use them for interactions with their environ-
ment. Reconstruction and digitization of 3D hand motion opens up many
possibilities for important applications. Hands gestures can be directly
used for human–computer interaction, which is especially relevant for
controlling augmented or virtual reality (AR/VR) devices where immer-
sion is of utmost importance. In addition, 3D hand motion capture is a
precondition for automatic sign-language translation, activity recognition,
or teaching robots. Different approaches for 3D hand motion capture
have been actively researched in the past. While being accurate, gloves
and markers are intrusive and uncomfortable to wear. Hence, marker-
less hand reconstruction based on cameras is desirable. Multi-camera
setups provide rich input, however, they are hard to calibrate and lack
the flexibility for mobile use cases. Thus, the majority of more recent
methods uses a single color or depth camera which, however, makes the
problem harder due to more ambiguities in the input. For interaction
purposes, users need continuous control and immediate feedback. This
means the algorithms have to run in real time and be robust in uncon-
trolled scenes. These requirements, achieving 3D hand reconstruction
in real time from a single camera in general scenes, make the problem
significantly more challenging. While recent research has shown promis-
ing results, current state-of-the-art methods still have strong limitations.
Most approaches only track the motion of a single hand in isolation and
do not take background-clutter or interactions with arbitrary objects or
the other hand into account. The few methods that can handle more
general and natural scenarios run far from real time or use complex
multi-camera setups. Such requirements make existing methods unus-
able for many aforementioned applications. This thesis pushes the state
of the art for real-time 3D hand tracking and reconstruction in general
scenes from a single RGB or depth camera. The presented approaches
explore novel combinations of generative hand models, which have been
used successfully in the computer vision and graphics community for
decades, and powerful cutting-edge machine learning techniques, which
have recently emerged with the advent of deep learning. In particular,
this thesis proposes a novel method for hand tracking in the presence of
strong occlusions and clutter, the first method for full global 3D hand
tracking from in-the-wild RGB video, and a method for simultaneous
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pose and dense shape reconstruction of two interacting hands that, for
the first time, combines a set of desirable properties previously unseen in
the literature.
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Z U S A M M E N FA S S U N G

Hände sind einer der Hauptfaktoren für die Ausführung komplexer
Aufgaben, und Menschen verwenden sie auf natürliche Weise für Interak-
tionen mit ihrer Umgebung. Die Rekonstruktion und Digitalisierung der
3D-Handbewegung eröffnet viele Möglichkeiten für wichtige Anwendun-
gen. Handgesten können direkt als Eingabe für die Mensch-Computer-
Interaktion verwendet werden. Dies ist insbesondere für Geräte der erwei-
terten oder virtuellen Realität (AR / VR) relevant, bei denen die Immersi-
on von größter Bedeutung ist. Darüber hinaus ist die Rekonstruktion der
3D Handbewegung eine Voraussetzung zur automatischen Übersetzung
von Gebärdensprache, zur Aktivitätserkennung oder zum Unterrich-
ten von Robotern. In der Vergangenheit wurden verschiedene Ansätze
zur 3D-Handbewegungsrekonstruktion aktiv erforscht. Handschuhe und
physische Markierungen sind zwar präzise, aber aufdringlich und unan-
genehm zu tragen. Daher ist eine markierungslose Handrekonstruktion
auf der Basis von Kameras wünschenswert. Multi-Kamera-Setups bie-
ten umfangreiche Eingabedaten, sind jedoch schwer zu kalibrieren und
haben keine Flexibilität für mobile Anwendungsfälle. Daher verwenden
die meisten neueren Methoden eine einzelne Farb- oder Tiefenkame-
ra, was das Aufgabe jedoch schwerer macht, da mehr Ambiguitäten in
den Eingabedaten vorhanden sind. Für Interaktionszwecke benötigen
Benutzer kontinuierliche Kontrolle und sofortiges Feedback. Dies bedeu-
tet, dass die Algorithmen in Echtzeit ausgeführt werden müssen und
robust in unkontrollierten Szenen sein müssen. Diese Anforderungen,
3D-Handrekonstruktion in Echtzeit mit einer einzigen Kamera in allge-
meinen Szenen, machen das Problem erheblich schwieriger. Während
neuere Forschungsarbeiten vielversprechende Ergebnisse gezeigt haben,
weisen aktuelle Methoden immer noch Einschränkungen auf. Die meisten
Ansätze verfolgen die Bewegung einer einzelnen Hand nur isoliert und
berücksichtigen keine alltäglichen Umgebungen oder Interaktionen mit
beliebigen Objekten oder der anderen Hand. Die wenigen Methoden,
die allgemeinere und natürlichere Szenarien verarbeiten können, laufen
nicht in Echtzeit oder verwenden komplexe Multi-Kamera-Setups. Solche
Anforderungen machen bestehende Verfahren für viele der oben genann-
ten Anwendungen unbrauchbar. Diese Dissertation erweitert den Stand
der Technik für die Echtzeit-3D-Handverfolgung und -Rekonstruktion
in allgemeinen Szenen mit einer einzelnen RGB- oder Tiefenkamera. Die
vorgestellten Algorithmen erforschen neue Kombinationen aus genera-
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tiven Handmodellen, die seit Jahrzehnten erfolgreich in den Bereichen
Computer Vision und Grafik eingesetzt werden, und leistungsfähigen
innovativen Techniken des maschinellen Lernens, die vor kurzem mit
dem Aufkommen neuronaler Netzwerke entstanden sind. In dieser Ar-
beit werden insbesondere vorgeschlagen: eine neuartige Methode zur
Handbewegungsrekonstruktion bei starken Verdeckungen und in unkon-
trollierten Szenen, die erste Methode zur Rekonstruktion der globalen 3D
Handbewegung aus RGB-Videos in freier Wildbahn und die erste Metho-
de zur gleichzeitigen Rekonstruktion von Handpose und -form zweier
interagierender Hände, die eine Reihe wünschenwerter Eigenschaften
komibiniert.
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1
I N T R O D U C T I O N

1.1 motivation

It is the most natural thing for humans to use their hands for everyday
interactions with others or with the environment. Also when interact-
ing with machines, and especially computers, the hands are used to
press buttons, keys on a keyboard or operate a mouse. However, hands
are capable of performing far more dexterous and expressive motions
than these input modalities allow. In addition, with the ever increasing
popularity and presence of smart and mobile devices, and especially
augmented and virtual reality (AR/VR) headsets, the use of conservative
input setups is simply not feasible. Technologies for hand tracking and
reconstruction enable the use of hands directly as input devices, which
is more natural and immersive, removes the need for separate input
devices, and can potentially use all degrees of freedom in the hand (see
Figure 1.1). Furthermore, these technologies can be employed for auto-
matic sign-language recognition, translation, and generation to increase
accessibility and ease communication. Another large area of application
is robotics. With automatic hand reconstruction, robots can learn how to
interact with their environment and manipulate objects by observing a
human teacher, significantly decreasing the manual programming effort.
This applies to all kinds of robots, ranging from manufacturing robots in
industry to assistive robots that can take care of elderly people.

To make hand tracking and reconstruction usable for the aforemen-
tioned applications and to a wide set of users, the methods need to work
accurately and robustly in real time for general scenes and with a simple
and flexible hardware setup. Since intrusive physical sensors, like data
gloves, are impractical or uncomfortable to wear, it is desirable to per-
form full articulated hand tracking with cameras, but without the use of
optical markers on the body as needed by some motion capture systems.
For many applications, a single camera is preferable. Multi-camera setups
cannot be easily calibrated by non-expert users and they lack the flexibil-
ity necessary for the use with mobile devices. For interaction purposes,
users need continuous control and immediate feedback. Methods need to
run robustly and in real time in uncontrolled environments, for example
in a cluttered living room and not only in a research lab. This necessity is
even made more crucial by the recent advances in virtual and augmented
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Figure 1.1: Real-time 3D hand motion capture and reconstruction enables diverse
applications in virtual reality and gaming. c©The respective copyright owners.

reality, where users are carrying their wearable devices wherever they
like. Without a robust, accurate and temporally consistent reconstruction
and feedback in real time, the immersion immediately breaks.

Based only on optical sensors, hand tracking and reconstruction is
a challenging task, especially in general scenes. Complex hand poses
often result in self-occlusions and ambiguities that are a lot more severe
than in full-body pose estimation. When restricted to a single camera
view, these problems become even harder. In particular, ambiguities in
pose could be caused by the self-similarity between fingers or by depth
ambiguities. Whereas the color channel often helps when tracking human
bodies or objects, e.g. to discriminate different parts, the information is
ambiguous for tracking hands due to their mostly uniform color. This,
together with the expressiveness of the human hand, leads to a highly
underdetermined pose estimation problem. When considering general
scenes with clutter and arbitrary objects, it becomes a challenging task to
segment hands in the first place. Furthermore, occlusions are stronger
and, if objects are tracked at the same time, physical constraints need to
be taken into account.

While recent research has shown promising results, current state-of-
the-art methods still have limitations. Many approaches only track the
motion of a single hand, sometimes in conjunction with a single known
object, in an isolated environment. They rarely tackle egocentric views,
i.e., where the camera is body-mounted, due to more complicated self-
occlusions, and rather focus on exocentric views, i.e., where the user
is standing or sitting in front of the camera. The majority of existing
approaches also does not take clutter or interactions with arbitrary objects
or the other hand into account. The few methods that can handle more
general and natural scenarios have runtimes that are far from real time
or use complex calibrated multi-camera setups. Such requirements make
existing methods unusable in unconstrained contexts, where the user’s
environment cannot be controlled, or priors on how and with which
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objects users are interacting cannot be imposed. However, having reliably
working methods in such contexts is essential for many applications as
discussed before.

Therefore, this thesis pushes the state of the art for real-time hand
tracking and reconstruction in general scenes from a single camera with
unconstrained viewpoint. In particular, this thesis proposes novel meth-
ods for hand tracking in the presence of strong occlusions and clutter,
hand tracking from in-the-wild RGB video, and simultaneous pose and
dense shape reconstruction of two interacting hands.

1.2 overview

The goal of this thesis is to explore real-time methods to reconstruct a
single hand or two hands in general scenes from a single RGB or RGB-D
camera (see Figure 1.2). The methods should work for an unconstrained
camera view, i.e., for both egocentric and exocentric viewpoints. In this
thesis, first-person or egocentric viewpoints are defined as those that
would typically be imaged by cameras mounted on the head, shoulder,
or chest. Third-person or exocentric viewpoints are recorded by a camera
that is standing at a fixed location in front of the user. The obtained
hand reconstructions should contain the 3D articulated motion of the
hand at a minimum, but might be extended to include the dense 3D
hand surface, if possible. The presented methods introduce new ways
to combine optimization-based fitting of kinematic hand models with
machine learning components to ensure a robust, temporally smooth,
and biomechanically plausible result.

Since data is key to train accurate and robust machine learning compo-
nents, this thesis first introduces several approaches to generate annotated
datasets of realistic and complex hand motion and interactions (Chap-
ter 4). A novel merged reality capture setup is introduced to produce
the fully annotated synthetic hand dataset SynthHands with plausible
hand–object interactions, while only needing motion data of one un-
occluded hand. To reduce the domain gap between synthetic and real
images, a novel geometrically consistent generative adversarial network
is used to perform unpaired image-to-image translation, thus creating
more realistic, so called GANerated, data. Next, an approach for automatic
labeling of real depth data with per-pixel segmentation or hand part la-
bels is presented. The method leverages colored gloves or painted hands
in combination with a calibrated RGB camera. The concept of discrete
hand part labels is generalized to continuous dense surface correspon-
dences for which it is, however, impossible to annotate real data. Hence,
a sophisticated motion-capture-driven physical simulation framework
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(a) Chapter 5: 3D hand motion capture in
presence of strong occlusions and clutter.

(b) Chapter 6: 3D hand motion capture from
in-the-wild RGB video.

(c) Chapter 7: Simultaneous pose and dense
shape reconstruction of two interacting
hands.

(d) Chapter 8: 3D hand motion capture and
accurate touch point estimation for thumb-
to-finger microgesture recognition.

Figure 1.2: All methods presented in this thesis run in real time using a single
color or depth camera.

is introduced to create the synthetic DenseHands dataset. It extends the
previous datasets by offering realistic two-hand interactions while only
requiring a tracking approach for a single hand.

After the datasets have been introduced, the thesis presents several
approaches for 3D hand reconstruction that tackle different challenging
aspects of the problem. All the methods presented in this thesis push the
state of the art of real-time hand tracking and reconstruction.

First, this thesis tackles real-time estimation of the full articulated
motion of a single hand under occlusion and in cluttered scenes from a
single egocentric RGB-D camera (Chapter 5). A first neural network
locates the possibly occluded hand in the complex scene while a second
neural network regresses joint positions. The articulation parameters of a
kinematic hand skeleton, rigid transform and joint angles, are estimated
by fitting it to the regressed positions.

Next, the employed sensor setup is further simplified to a standard RGB
camera with unrestricted viewpoint (Chapter 6). The full parameters of a
kinematic skeleton are estimated by minimizing the discrepancy between
the skeleton’s 2D and 3D joint locations as predicted by a neural network.
It is shown that using the enhanced GANerated Hands training data is
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key to obtain accurate results on real monocular RGB images. This is
because the RGB-only network, due to the missing depth modality, is
more sensitive to the domain gap between synthetic and real RGB data.
As a result, the method is applicable to more general in-the-wild videos,
like legacy videos found on YouTube.

Subsequently, this thesis explores real-time reconstruction of two inter-
acting hands from a single depth camera (Chapter 7). The method does
not only estimate the full articulated motion of both hands but also
reconstructs dense 3D shape of both hands. A neural network is used to
regress segmentation masks and dense vertex correspondences to a hand
model from a depth image. The pose and shape parameters of the two
interacting hands are estimated in an energy minimization framework
which uses the regressed correspondences.

Finally, a new application of state-of-the-art real-time 3D hand tracking
is demonstrated by FingerInput, a system for thumb-to-finger microges-
ture recognition. Leveraging hand part segmentation by a neural network
in conjunction with a fully articulated hand model, the system supports
a more extensive and richer gesture set compared to any previous work.

1.3 structure

This thesis is divided into nine chapters:

• Chapter 1 provides motivation for the topic of this thesis, gives
an overview of the work, explains the structure of the thesis and
emphasizes the main contributions.

• Chapter 2 discusses previous work in the field of 3D hand recon-
struction.

• Chapter 3 introduces the concept of a kinematic hand model and
the hand models used throughout the thesis.

• Chapter 4 presents several new datasets that were created for build-
ing robust and accurate machine-learning components to be used
in the reconstruction approaches.

• Chapters 5, 6, and 7 propose novel methods that tackle challenging
aspects of real-time 3D hand reconstruction in general scenes, and
provide extensive experimentation and results.

• Chapter 8 presents a novel application of real-time 3D hand track-
ing, namely a recognition system for thumb-to-finger microgestures.

• Chapter 9 discusses important insights and core contributions of
this thesis as well as opportunities for future work.
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1.4 contributions

This section summarizes the main contributions of this thesis.

The contributions of Chapter 4 are:

• A data generation framework for synthesizing an extensive anno-
tated RGB-D dataset, SynthHands, of hands in natural interaction
with objects and clutter (published as part of Mueller et al., 2017).

• An enhanced synthetic RGB hand image dataset, the GANerated
Hands dataset, whose statistical distribution resembles real-world
hand images. This is achieved by a novel geometrically consistent
generative adversarial network that performs image-to-image trans-
lation while preserving poses during translation (published as part
of Mueller et al., 2018).

• A new depth-based dataset for per-pixel left/right hand segmen-
tation as well as a novel per-pixel hand part dataset which were
automatically annotated using hands colored with body paint and
a calibrated RGB camera (published as parts of Mueller et al., 2019

and Soliman et al., 2018, respectively).

• The first two-hand tracking dataset, DenseHands, that includes both
pose and dense shape annotations. The creation process leverages a
single-hand tracker in conjunction with a live physical simulation
system to obtain realistic interactions while avoiding inter-hand
penetrations (published as part of Mueller et al., 2019).

The contributions of Chapter 5 (published as Mueller et al., 2017) are:

• A novel method that localizes the hand and estimates, in real time,
the 3D joint locations from egocentric viewpoints, in clutter, and
under strong occlusions using two convolutional neural networks.
A kinematic pose tracking energy further refines the pose by esti-
mating joint angles of a temporally smooth tracking.

• Extensive evaluation on a new annotated real benchmark dataset
EgoDexter featuring egocentric cluttered scenes, interaction with
objects, and a diverse set of users.

The contributions of Chapter 6 (published as Mueller et al., 2018) are:

• The first real-time hand tracking system that tracks global 3D joint
positions from unconstrained monocular RGB-only images and
video.
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• Experiments about the influence of the domain gap between syn-
thetic and real images for 3D hand pose estimation from monocular
RGB.

The contributions of Chapter 7 (published as Mueller et al., 2019) are:

• The first method that can track two interacting hands in real time
with a single depth camera, while at the same time being able to
estimate the hand shape automatically and taking collisions into
account.

• Contrary to existing methods, the presented approach is more
robust and reliable in involved hand–hand interaction settings.

The contributions of Chapter 8 (published as Soliman et al., 2018) are:

• A real-time method for 3D hand tracking based on the combination
of the generative Sum of Gaussians hand model and a neural
network for hand part classification.

• An approach for fast and accurate detection and precise localization
of on-skin touch points for thumb-to-finger microgesture recogni-
tion.

1.5 publications

All the work presented in this thesis was also published in the following
publications:

• Franziska Mueller et al. (2017). “Real-time Hand Tracking under
Occlusion from an Egocentric RGB-D Sensor.” In: Proceedings of the
International Conference on Computer Vision (ICCV). IEEE, pp. 1163–
1172

• Franziska Mueller et al. (2018). “GANerated Hands for Real-Time
3D Hand Tracking from Monocular RGB.” In: Proceedings of the
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
pp. 49–59

• Mohamed Soliman et al. (2018). “FingerInput: Capturing Expressive
Single-Hand Thumb-to-Finger Microgestures.” In: Proceedings of the
International Conference on Interactive Surfaces and Spaces (ISS). ACM,
pp. 177–187 [Best Academic Paper Award]
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• Franziska Mueller et al. (2019). “Real-time Pose and Shape Recon-
struction of Two Interacting Hands with a Single Depth Camera.”
In: ACM Transactions on Graphics (TOG) 38.4, pp. 1–13

In addition, contributions were made to the following publications which
are, however, not part of this thesis:

• Dushyant Mehta et al. (2018). “Single-Shot Multi-Person 3D Pose
Estimation From Monocular RGB.” In: Proceedings of the International
Conference on 3D Vision (3DV). IEEE, pp. 120–130

• Abhishake Kumar Bojja et al. (2019). “HandSeg: An Automatically
Labeled Dataset for Hand Segmentation from Depth Images.” In:
Proceedings of the Conference on Computer and Robot Vision (CRV).
IEEE, pp. 151–158

• Tarun Yenamandra et al. (2019). “Convex Optimisation for Inverse
Kinematics.” In: Proceedings of the International Conference on 3D
Vision (3DV). IEEE, pp. 318–327

• Dushyant Mehta et al. (2020). “XNect: Real-time Multi-Person 3D
Motion Capture with a Single RGB Camera.” In: ACM Transactions
on Graphics (TOG) 39.4

• Jiayi Wang et al. (2020). “Generative Model-Based Loss to the Res-
cue: A Method to Overcome Annotation Errors for Depth-Based
Hand Pose Estimation.” In: Proceedings of the International Conference
on Automatic Face and Gesture Recognition (FG). IEEE, pp. 93–100

• Neng Qian et al. (2020). “HTML: A Parametric Hand Texture Model
for 3D Hand Reconstruction and Personalization.” In: Proceedings of
the European Conference on Computer Vision (ECCV). Springer



2
R E L AT E D W O R K

Hand pose estimation techniques have a rich history due to many possi-
ble applications, e.g., in human–computer interaction, AR/VR interfaces,
motion control, and activity recognition. Markers or gloves were used
to reconstruct hand poses in earlier work or methods that focus solely
on high-quality results (Glauser et al., 2019; Han et al., 2018; Wang and
Popović, 2009). These setups are inflexible and not usable for ubiqui-
tous or mobile settings. Some used a multi-camera setup to deal with
occlusions and ambiguities while losing flexibility and processing speed
which are both essential for interactive techniques (Ballan et al., 2012;
Sridhar et al., 2013; Wang et al., 2011). Most of the recent approaches
refrain from using markers for flexibility, aim at real-time frame rates
and use a single RGB or RGB-D camera to enable adaptability for mobile
setups. The following review of related work focuses on such methods
since they are most similar in spirit to the approaches proposed in this
thesis.

2.1 types of hand reconstruction algorithms

The first class of methods, the so-called generative methods, assumes the
availability of a generative model of the hand, ranging from meshes,
collections of geometric primitives, to implicit functions, as depicted in
Figure 2.1 (Heap and Hogg, 1996; Oikonomidis et al., 2011a; Tagliasacchi
et al., 2015; Taylor et al., 2016, 2017; Tkach et al., 2016). During pose
optimization, the image formation model is employed to compare the
hand model at its current pose to the input image and this discrepancy
is minimized. Such hand models are usually personalized to individual
users and are obtained manually, e.g., by laser scans or simple scaling of
a base model. Only few methods estimate a detailed hand shape auto-
matically. Khamis et al., 2015 build a shape model of a hand mesh from
sets of depth images acquired from different users. A method for effi-
ciently fitting this model to a sequence of a new actor was subsequently
presented by Tan et al., 2016. Tkach et al., 2017 jointly optimize pose
and shape of a sphere mesh online, and accumulate shape information
over time to minimize uncertainty. In contrast, Remelli et al., 2017 fit a
sphere mesh directly to the whole image set by multi-stage calibration
with local anisotropic scalings. Romero et al., 2017 introduce a parametric
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Geometric Primitives

Oikonomidis et al., 2012

Meshes

Tzionas et al., 2016

Sphere Meshes
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Sum of Gaussians

Figure 2.1: Different hand models used in the literature. c©The respective copy-
right owners.

model of hand shape and pose which can be used for generative model
fitting. Generative methods usually enforce temporal consistency but are
therefore prone to both propagating errors over time and getting stuck
in poor local optima. They do not have a training stage and are hence
independent of any biases that might be present in large training data
corpora.

On the other end of the spectrum, there are discriminative data-driven
methods that often perform independent per-frame pose estimations.
They are based on machine learning techniques and usually depend on
huge pose databases for training or retrieval (Athitsos and Sclaroff, 2003;
Tompson et al., 2014; Wang and Popović, 2009; Zhou et al., 2016). Random
forests have been a popular choice (Keskin et al., 2012; Li et al., 2015; Sun
et al., 2015; Tang et al., 2014; Wan et al., 2016; Xu and Cheng, 2013) but
most of the more recent methods resort to using neural networks because
they promise large learning capacities for hand pose estimation (Baek
et al., 2018; Ge et al., 2016, 2018; Oberweger et al., 2015; Sinha et al., 2016;
Wan et al., 2017; Ye et al., 2016). Some of these approaches run an inverse
kinematics step to fit a model to the predictions. While these methods do
not propagate errors over frames and can exploit the knowledge priors
they built during training at test time, they suffer from temporal jitter
and might be impacted by data biases.

In general, generative and discriminative approaches have comple-
mentary advantages and disadvantages, for example regarding temporal
stability, recovery from failures, or dependence on large high-quality
data corpora. Thus, the idea to combine these two paradigms is natural.
Such hybrid approaches have been successfully explored in the context of
hand tracking (Qian et al., 2014; Sharp et al., 2015; Sridhar et al., 2015a;
Taylor et al., 2016; Ye et al., 2016). For example, they use machine learn-
ing components to initialize pose hypotheses in the optimization of the
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Multi-Camera Setups
Han et al., 2018

Sridhar et al., 
2013

Camera View

Side View

Single Depth Camera

Figure 2.2: Left: Multi-camera setups are complex and inflexible ( c©The respec-
tive copyright owners). Right: A single depth camera can provide partial 3D
information (color coding indicates distance from the camera).

generative model or the predicted information is directly integrated into
the objective function.

2.2 input modalities

Earlier approaches or approaches solely focusing on high quality em-
ployed calibrated multi-camera setups to have more constraints for re-
covering the full 3D hand pose and to alleviate the challenge of strong
self-occlusions (Ballan et al., 2012; Oikonomidis et al., 2011b; Sridhar
et al., 2013). Most recent approaches focus on single-camera setups due
to the complexity and inflexibility of calibrated multi-camera setups (see
Figure 2.2, left). Since a depth image has several advantages over an
RGB image, a single RGB-D or depth sensor is a popular choice (survey
given by Supančič et al., 2018; Yuan et al., 2018). First, it provides partial
3D information (see Figure 2.2, right) whereas an RGB image contains
scale and depth ambiguities. In addition, it is agnostic to lighting and
hand appearance variation, making algorithms generalize more easily
to unseen scenarios. However, depth sensors are more expensive and
not ubiquitous in contrast to RGB cameras. Furthermore, they have a
higher power consumption and might not work in outdoor scenes due to
interference with the infrared radiation of the sun.

Comparably few methods have focused on hand reconstruction from
monocular RGB input. Some of the first methods for this problem did
not produce metrically accurate 3D pose as they only fetched the nearest
3D neighbor for a given input or assume that the z-coordinate is fixed
(Heap and Hogg, 1996; Romero et al., 2010; Stenger et al., 2006). More
recently, Simon et al., 2017 proposed an RGB-based method for hand joint
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position regression. However, the method only estimates 2D positions
from a monocular image and again requires multi-view triangulation
to obtain 3D results. Panteleris and Argyros, 2017 proposed to use a
short-baseline stereo RGB camera for hand pose estimation without the
need for a disparity map. Nevertheless, stereo cameras are not readily
available to everyday users. Zimmermann and Brox, 2017 proposed a
learning-based method to predict the 3D hand pose from monocular
data. However, their 3D joint predictions are relative to a canonical frame,
i.e., the absolute coordinates are unknown and any global motion of
the hand relative to the camera is lost. Furthermore, their method is not
able to distinguish 3D poses with the same 2D joint position projection
since their 3D predictions are merely based on the abstract 2D heatmaps
and do not directly take the image into account. In contrast, this thesis
proposes the first method for real-time full 3D hand pose estimation from
monocular RGB input (Chapter 6). By jointly learning 2D and 3D joint
positions from image evidence, the method is able to correctly estimate
poses with ambiguous 2D joint positions. Since the input is unconstrained
monocular RGB video, it can directly be employed on community videos,
e.g., from YouTube. The method proposed in this thesis, together with
other pioneering works, have spurred significant interest in monocular
3D hand reconstruction. This has led to many new works tackling single
hand reconstruction from monocular RGB (Baek et al., 2019; Boukhayma
et al., 2019; Cai et al., 2018; Iqbal et al., 2018; Panteleris et al., 2018; Spurr
et al., 2018; Yang et al., 2019; Zhang et al., 2019), or even hand and object
reconstruction (Hasson et al., 2019; Tekin et al., 2019).

2.3 hands in interaction

Whereas most of the aforementioned approaches track a single hand in
isolation, there has been much less research on how to reconstruct hands
in interaction, i.e., in cluttered environments and while interacting with
objects or a second hand. This is due to additional challenges such as
segmentation of the hands and severe occlusions, which made researchers
focus on simplified scenarios first.

hands and objects . Some works estimate the pose of one inter-
acting hand without simultaneously tracking the object. They employ
large databases (Romero et al., 2010), part-based trackers (Hamer et al.,
2009) or formulate the pose estimation as classification problem with
pose classes (Rogez et al., 2014). On the one hand they do not need to
optimize more parameters than for a single hand, on the other hand
they cannot exploit mutual constraints between hands and the manip-
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ulated object which could provide valuable information. Methods that
incorporate such constraints often use computationally expensive physics
simulation (Tzionas et al., 2016) or multiple calibrated viewpoints (Ballan
et al., 2012; Oikonomidis et al., 2011b). Together with the additional
number of model parameters that need to be estimated for the object this
leads to slow offline runtimes of the aforementioned approaches. As in
single hand tracking, more recent work is leaning towards the use of a
single RGB-D camera (Kyriazis and Argyros, 2014; Tzionas et al., 2014,
2016) to yield a more flexible and mobile setup. This thesis proposed a
novel method for real-time 3D hand tracking under strong occlusions
in cluttered environments which compares favorably to previous works
(Chapter 5).

two interacting hands . Some methods try to overcome the chal-
lenges of two interacting hands, namely the inherent problem to distin-
guish the two hands and the more severe occlusions, by using marker
gloves (Han et al., 2018) or multi-view setups (Ballan et al., 2012). Other
approaches tackle the problem from a single RGB-D camera to achieve
more flexibility and practical usability. An analysis-by-synthesis approach
is employed by Oikonomidis et al., 2012 who minimize the discrepancy of
a rendered depth image and the input using particle swarm optimization.
Kyriazis and Argyros, 2014 apply an ensemble of independent trackers,
where the per-object trackers broadcast their state to resolve collisions.
Tzionas et al., 2016 use discriminatively detected salient points and a colli-
sion term based on distance fields to obtain an intersection-free model fit.
Nevertheless, the aforementioned single-camera methods do not achieve
real-time rates, and operate at 0.2 to 4 frames per second. There exist
some methods that track two hands in real time, albeit without being
able to deal with close hand-hand interactions. Taylor et al., 2016 jointly
optimize pose and correspondences of a subdivision surface model but
the method fails when the hands come close together, making it unusable
for capturing any hand-hand interaction. Taylor et al., 2017 employ ma-
chine learning techniques for hand segmentation and palm orientation
initialization, and subsequently fit an articulated distance function. They
use a custom-built high frame-rate depth camera to minimize the motion
between frames, thus being able to fit the model with very few optimizer
steps. However, they do not resolve collisions and they do not estimate
hand shape, so that they require a given model for every user. While they
show some examples of hand-hand interactions, they do not show very
close and elaborate interactions, e.g., with tight grasps. In contrast to
previous two-hand tracking solutions, this thesis proposes an approach
that (i) runs in real time with a commodity camera, (ii) is marker-less,
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(iii) uses a single (depth) camera only, (iv) handles hand collisions, and
(v) automatically adjusts to the user’s hand shape (Chapter 7).
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P R E R E Q U I S I T E S

Figure 3.1: The anatomical joints of the hand.
(Figure from Bullock et al., 2012)

This chapter introduces the
parametric hand models that
are used throughout the the-
sis. First, the anatomical struc-
ture of the hand joints, as de-
picted in Figure 3.1, is mod-
eled using a kinematic skele-
ton (Section 3.1). The kine-
matic hand skeleton is then fur-
ther extended with different
hand surface representations,
namely the Sum of Gaussians
formulation (Section 3.2) and
the surface mesh formulation
(Section 3.3).

3.1 kinematic skeletons

In general, a kinematic skeleton is a hierarchy of rigid transforms ∈ SE(3)
which can be used to model articulated motion. The hierarchy is a tree
structure, i.e., all transforms have exactly one parent transform except for
one root transform. The transforms are usually represented locally. They
specify how a point in the local coordinate system of the child transform
can be mapped to the local coordinate system of the parent transform.
Hence, a mapping from the local coordinate system of transform i to the
global coordinate system, or world coordinate system, can be computed
by iteratively multiplying the local transforms along the path from i to
the root in the hierarchy

Tg
i =

 ∏
j∈ anc(i)

Tl
j

 · Tl
i . (3.1)

Here, anc(i) is the list of ancestors of transform i, ordered from parent(i)
to the root. In the following, Tg

i is referred to as local-to-global transform i
whereas Tl

i is denoted as local transform i.
For the skeleton of a hand, the transforms correspond to the joints and

the hierarchy is approximately given by the bones as shown in Figure 3.2.

15
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The goal of hand pose estimation with a kinematic skeleton is to estimate
the parameters of all transforms in the kinematic hand skeleton. The root
transform contains the global translation and rotation of the hand. For
all other transforms, the translations are described by the bone lengths
and might be given depending on the availability of a personalized hand
model. For the rotational part of the rigid transforms, a full 3D rotation
∈ SO(3) could be estimated. However, the joints in the hand anatom-
ically exhibit fewer degrees of freedom (DOF) as shown in Figure 3.2.

Figure 3.2: The kinematic skeleton hand
model. The root transform is located at
the wrist and has 6 degrees of freedom
(DOF) which correspond to the global
position and rotation of the hand. Every
other transform corresponds to a rota-
tional joint in the hand and either has 1

or 2 DOF (assuming fixed bone lengths).

Using the full 3 DOF per joint re-
sults in a highly over-parameter-
ized model that needs stronger
regularization for successfully op-
timizing the hand pose. For exam-
ple, Romero et al., 2017 employ
a low-dimensional subspace rep-
resentation for the pose obtained
by linear dimensionality reduction
via principal component analysis
(PCA) (Jolliffe, 1986). A more com-
pactly parameterized and hence
popular parameterization for the
local rotations in a kinematic hand
skeleton is the axis-angle formu-
lation. A corresponding rotation
axis is defined for each DOF in
the hand according to the hand
anatomy. Subsequently, only a sin-
gle rotation angle needs to be es-
timated per DOF. A local rotation matrix can be calculated per DOF
using the respective rotation axis and angle. The local rotation matrices
of all DOF that belong to the same joint i are then concatenated to obtain
the rotational part of the rigid transform Tl

i . The parameter vector of a
kinematic hand model, consisting of global translation and rotation as
well as joint rotation angles, is denoted as θ ∈ R26.

The keypoint locations in a kinematic hand skeleton, e.g., joint posi-
tions or fingertip positions, depend on the pose parameters θ. They can
be calculated using the local-to-global transforms of the joints. The (homo-
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geneous) 3D position of the j-th joint of modelM in global coordinates
is given as

M(θ)j = Tg
j (θ) ·


0

0

0

1

 = ( Tg
j (θ) )∗,4 , (3.2)

since the joint is the origin in its own local coordinate system. Analo-
gously, the fingertip position of finger f can be formulated as

M(θ) f = Tg
parent( f )(θ) · bone f , (3.3)

where bone f is the local bone vector connecting the fingertip to its parent
joint in the parent’s coordinate system.

While the kinematic skeleton hand model can be used to model the
anatomical bone structure and motion of a hand, it does not model the
surface or volume of the hand. However, when images or a video are
provided for hand pose estimation, the hand surface is what is actually
visible in the observation. Hence, it is crucial for generative hand models
to describe the hand surface or volume in order to compare the current
model parameter hypothesis to the input.

3.2 sum of gaussians model

The Sum of Gaussians (SoG) model extends the kinematic skeleton model
of the hand with a collection of 3-dimensional Gaussian density functions.
It was originally proposed for full-body pose estimation (Stoll et al., 2011)
and subsequently adapted for hand tracking (Sridhar et al., 2013, 2014,
2016). The Gaussians are rigidly attached to the bones of the kinematic
model, i.e. their position depends on the hand model parameters θ and
can be calculated using the local-to-global transform of their parent joint.
Their standard deviation σ is set such that the isosurface at 1σ coincides
with the surface of the hand (see Figure 3.3 (a)). Whereas the surface
approximation is coarser than a surface mesh (see Section 3.3), the SoG
model offers high computational efficiency due to the low number of
primitives and does not require a separate step for explicit computation
of correspondences before model fitting since the Gaussian functions
have infinite spatial extent.

To fit the SoG model to images, the following procedure is commonly
used:

1. Image regions of similar color or depth are clustered by quadtree
clustering as demonstrated in Figure 3.3 (c).
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Figure 3.3: (a) The Sum of Gaussians (SoG) hand model. (b,c) Quadtree clustering
of an input image. (Figure from Sridhar et al., 2014)

2. A 2D or 3D Gaussian, depending on the input modality, is created
for each leaf of the quadtree. The standard deviation is set such
that the 1σ isosurface circle or sphere fits the quad. This yields a
Sum of Gaussians representation for the input.

3. The similarity of the input and model SoG is then computed as
their overlap and can be maximized.

The overlap of two d-dimensional Sums of Gaussians {Gp}
Np
p=1, {Gq}

Nq
q=1

is formulated as
Np

∑
p=1

Nq

∑
q=1

∫
Rd

Gp(x) · Gq(x) dx . (3.4)

As described by Sridhar et al., 2014, an integral over a product of two
un-normalized isotropic Gaussians Gp(x; µp, σp) and Gq(x; µq, σq) of di-
mension d is given as∫

Rd
Gp(x; µp, σp) · Gq(x; µq, σq) dx (3.5)

=

√
(2π)d(σ2

pσ2
q )

d√
(σ2

p + σ2
q )

d
exp

(
−
||µp −µq||22
2(σ2

p + σ2
q )

)
.

This term is differentiable with respect to µ and σ. Furthermore, the
derivative ∂µ

∂θ is given by the transforms of the joints. If a hand model, in
addition to pose parameters θ, has shape parameters β, e.g., specifying
bone lengths or hand thickness, the derivatives ∂µ

∂β , ∂σ
∂β can also be calcu-

lated. These analytical derivatives allow fast fitting of the SoG model in
an optimization-based framework.

Note that the computation of the overlap considers all possible pairs
of Gaussians, since they have infinite spatial extent, and thus does not
require any explicit correspondence search like mesh-based models. Fur-
thermore, the SoG model offers a smooth and differentiable way to avoid
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collisions within a hand model or between multiple models. By penaliz-
ing the overlap of the SoG model with itself, i.e., considering all pairs of
Gaussians within the SoG hand model, intersections can be effectively
resolved. It should be emphasized that this way to avoid collisions in
model fitting is continuous and significantly more efficient compared to
binary intersection tests for hand mesh models.

3.3 hand mesh model

Mean Shape and Pose

+3σ

+3σ

-3σ

-3σ

Shape

Shape

Pose Pose

front back

Figure 3.4: Illustration of the parametric
MANO hand shape and pose space.

In contrast to the Sum of Gaus-
sians model, hand mesh models
describe the hand surface explic-
itly using a surface mesh. A sur-
face mesh is a piecewise-linear ap-
proximation of a 3D surface using
a collection of connected surface
primitives like triangles or quad-
rangles. While they usually ex-
hibit a higher computational cost,
e.g., compared to the SoG model,
they model the hand surface with
more detail. Some methods use a
personalized hand mesh obtained
from a laser scanner (Ballan et al.,
2012; Tzionas et al., 2016), which
is not readily available to everyday
users. Hence, a parametric hand
model, which is called the MANO
model, was published by Romero
et al., 2017.

It was built from about 1000 3D hand scans of 31 persons in wide
range of different hand poses. The parametric hand shape and pose
space of MANO was obtained by fitting a template hand mesh to all
scans and subsequently performing Principal Component Analysis (PCA)
(see Figure 3.4). The hand surface is represented by a 3D mesh with
vertices V , where NV := |V| = 778. The MANO model defines a function
v : RNS ×RNP → R3NV , that computes the 3D positions of all of the
mesh’s NV vertices, given a shape parameter vector β ∈ RNS and pose
parameter vector θ ∈ RNP , with NS = 10 and NP = 51 = 45 + 6 (for θ
including global translation and rotation).

The function v is formulated as

v(β,θ) = LBS(M(β,θ), J(β), W) . (3.6)
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Here, M(·) is a parametric hand template in rest pose, J(·) computes the
3D position of the hand joints, and W are the skinning weights used by
the linear blend skinning function LBS (Alias|Wavefront, 1998; Lewis
et al., 2000; Softimage, 1992). Note that the parametric hand template
M(β,θ) = T + S(β) + C(θ) consists of a fixed template mesh T, identity-
specific shape offsets S(·), and pose-dependent corrective offsets C(·).
The pose-dependent correctives are used to reduce skinning artifacts,
please refer to Romero et al., 2017 for further details.

The shape parameters β ∈ RNS and the pose parameters excluding the
global rigid transform θ ∈ RNP′ are coefficients of the low-dimensional
shape and pose spaces that were obtained by performing PCA. The full
dimensionality is given as NS = 10 and NP′ = 45 but any subset of
the first x components could be used to obtain less fine-scale but more
regularized results. Note that the dimensionality of the MANO pose space
(without global translation and rotation) is significantly higher than for
the axis-angle-based kinematic skeleton (45 vs. 20, see Section 3.1). This
is the case since the MANO model uses the full 3 DOF for each joint
irrespective of the anatomically plausible number of DOF for each hand
joint. For example, the DIP and PIP joints of the fingers (see Figure 3.1)
can be well approximated by a single DOF since they only allow flexion–
extension motion. Hence, the use of pose regularizers is inevitable, at
least when using all 45 pose PCA components, to make the model fitting
problem less ill-posed. Fortunately, since the MANO model was built
using PCA, it naturally allows for a statistical regularization by simply
imposing that the parameters are close to zero, which corresponds to a
Tikhonov regularizer.



4
D ATA S E T S

Data is key for training accurate and robust machine learning systems.
To enable generalizability of the system to unseen test cases, the data
should capture diverse and challenging scenes. For training supervised
methods, the data requires annotations which are often hard to obtain.
For example, for manual annotation of keypoint locations in images, an
annotator needs to look at every single image and mark all points. This
is time-consuming and manual annotations are always noisy. For some
tasks, manual annotation might even be impossible (see Section 4.4).

This thesis explores smart and novel ways to generate annotated train-
ing data for various tasks related to hand reconstruction. Examples for
how this data is used in full 3D hand reconstruction systems are given in
the following chapters. The contributions of this chapter can be summa-
rized as:

• A data generation framework for synthesizing an extensive RGB-D
dataset, SynthHands, with full 3D annotation of 21 hand keypoints.
Natural hand–object interactions are captured using a novel merged
reality setup (Section 4.1, published as part of Mueller et al., 2017,
prerequisite for the method presented in Chapter 5).

• A novel geometrically consistent GAN that performs image-to-
image translation while preserving poses during translation. Based
on this network, the RGB images of the SynthHands dataset are
enhanced such that the statistical distribution resembles real-world
hand images. The resulting GANerated Hands dataset overcomes
existing datasets in terms of size (>260k frames), image fidelity,
and annotation precision (Section 4.2, published as part of Mueller
et al., 2018, prerequisite for the method presented in Chapter 6).

• A depth-based dataset for per-pixel left/right segmentation as well
as a novel per-pixel hand part dataset which is automatically anno-
tated using painted hands and a calibrated RGB camera (Section 4.3,
published as parts of Mueller et al., 2019 and Soliman et al., 2018,
prerequisites for the methods presented in Chapter 7 and Chapter 8,
respectively).

• The DenseHands dataset which includes both pose and dense shape
annotations for two interacting hands. Live user-driven physical

21
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simulation is leveraged to create natural two-hand motions without
the need of a robust two-hand tracking system (Section 4.4, pub-
lished as part of Mueller et al., 2019, prerequisite for the method
presented in Chapter 7).

4.1 synthhands dataset

Figure 4.1: The SynthHands dataset has
accurate annotated data of a hand in-
teracting with objects. A merged real-
ity framework is used to track a real
hand, where all joint positions are an-
notated, interacting with a virtual ob-
ject (top). Synthetic images are rendered
with chroma key-ready colors, enabling
data augmentation by composing the
rendered hand with varying object tex-
ture and real cluttered backgrounds
(bottom).

Supervised learning methods, in-
cluding CNNs, require large
amounts of training data in order
to learn all the variation exhibited
in real hand motion. Fully anno-
tated real data would be ideal for
this purpose but it is time con-
suming to manually annotate data
and annotation quality may be un-
reliable (Oberweger et al., 2016).
Automatic annotation based on
markers is also unsuitable since
it changes the appearance of the
hand. To circumvent these prob-
lems, existing methods (Rogez et
al., 2014, 2015) have used synthetic
data. Despite the advances made,
existing datasets are constrained
in a number of ways: they typi-
cally show unnatural mid-air mo-
tions, no complex hand-object in-
teractions, and do not model real-
istic background clutter and noise.

This thesis proposes a new
dataset, SynthHands, with full 3D annotations for 21 keypoints in the
hand, namely the 5 fingertips and all 16 joints (as defined in Section 3.1).
The dataset combines real captured hand motion (retargeted to a virtual
hand model) with natural backgrounds and virtual objects to sample all
important dimensions of variability at previously unseen granularity. It
captures the variations in natural hand motion such as pose, skin color,
shape, texture, background clutter, camera viewpoint, and hand-object
interactions. The SynthHands dataset has unique features that make it
well suited for supervised training of learning-based methods.
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Figure 4.2: An example set of random samples taken from the SynthHands
dataset. See Table 4.1 for description of dataset variability.

natural hand motions . Instead of using static hand poses (Rogez
et al., 2015), real, non-occluded, hand motion was captured in mid-air
from a third-person viewpoint, with a state-of-the-art real-time mark-
erless tracker (Sridhar et al., 2015a). These motions were subsequently
re-targeted onto a photorealistic synthetic hand rigged by an artist. Be-
cause the synthetic hand is posed using the captured hand motion, it
mimics real hand motions and increases dataset realism.

hand shape and color . Hand shape and skin color exhibit large
variation across users. To simulate real world diversity, SynthHands uses
skin textures randomly sampled from 12 different skin tones. Further-
more, it contains variation in other anatomical features (e.g., male hands
are typically bigger and may contain more hair). Finally, hand shape vari-
ation is modeled by randomly applying a scaling parameter β ∈ [0.8, 1.2]
along each dimension of a default hand mesh.

arbitrary viewpoint. Synthetic data has the unique advantage
that it can be rendered from arbitrary camera viewpoints. In order to sup-
port difficult egocentric views, five virtual cameras that mimic different
egocentric perspectives are used in addition to five different third-person
viewpoints. The virtual cameras generate RGB-D images while also sim-
ulating sensor noise and camera calibration parameters.

hand-object interactions . Hand-object interactions are realisti-
cally simulated by using a merged reality approach to track real hand
motion interacting with virtual objects. This is achieved by leveraging
the real-time capability of existing hand tracking solutions (Sridhar et al.,
2015a) to show the user’s hand interacting with a virtual on-screen object.
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Figure 4.3: The SynthHands dataset is created by posing a detailed 3D hand
model with real hand motion data. Virtual objects are incorporated into the 3D
scenario. To allow data augmentation, scene background and object foreground
are rendered as constant plain colors (top row) while the shading information
for the object is output in a separate image. In a post-processing step, random-
ized textures are chosen as object appearance and then composed with the
shading details (bottom row). Furthermore, real RGB-D backgrounds are used
for background augmentation.

Users perform motions such as object grasping and manipulation, thus
simulating real hand-object interactions (see Figure 4.1).

object shape and appearance . SynthHands contains interactions
with a total of seven different virtual objects in various locations, rotations
and scale configurations. To enable augmentation of the object appearance
to increase dataset variance, the object albedo (i.e., pink in Figure 4.3)
and shading layers are rendered separately. Chroma keying is used to
replace the pink object albedo with a texture randomly sampled from a
set of 145 textures and combining it with the shading image. Figure 4.3
shows some examples of the data before and after augmentation.

real backgrounds . Finally, cluttered scenes and backgrounds are
simulated by compositing the synthesized hand-object images with real
RGB-D captures of real backgrounds, including everyday desktop scenar-
ios, offices, corridors and kitchens. Chroma keying is used to replace the
default background (green in Figure 4.3) with the captured backgrounds.

The proposed data generation framework is built using the Unity Game
Engine (Unity, 2005) and uses a rigged hand model distributed by Leap-
Motion, 2016. In total, SynthHands contains roughly 220,000 RGB-D im-
ages exhibiting large variation seen in natural hands and interactions.
Table 4.1 shows the modes of variation in the SynthHands dataset. Repre-
sentative frames are shown in Figure 4.2.



4.2 enhancing synthetic data 25

Table 4.1: Details about the variations explored in the SynthHands dataset.

Mode of Variation Amount of Variation

Pose
63,530 frames of real hand motion,

sampled every 5th frame

Wrist+Arm

Rotation

wrist: sampled from a 70 deg. range

arm: sampled from a 180 deg. range

Shape
x, y, z scale sampled uniformly in

[0.8, 1.2]; female + male mesh

Skin Color 2 x 6 hand textures (female/male)

Camera Viewpoints 5 egocentric + 5 third-person

Object Shapes 7 objects

Object Textures 145 textures

Background Clutter
10,000 real images, uniform random

u,v offset in [-100, 100]

4.2 enhancing synthetic data

While the main advantage of synthetic images is that the ground-truth
3D joint positions are known, a significant disadvantage is that they
usually lack realism. Such discrepancy between real and synthetic images
limits the generalization ability of a CNN trained only on the latter. The
problem is more severe when considering RGB images instead of depth
images. Rendering realistic depth images is easier since many variations,
such as lighting or appearance, are not present. Therefore, synthesizing
realistic RGB images of hands is significantly harder.

4.2.1 Related Techniques

Techniques like domain adaptation (Ganin and Lempitsky, 2015; Peng
and Saenko, 2018; Tzeng et al., 2017) aim to bridge the gap between
real and synthetic data by learning features that are invariant to the
underlying differences. Other techniques use real–synthetic image pairs
(Chen and Koltun, 2017; Isola et al., 2017; Sangkloy et al., 2017) to train
networks that can generate images that contain many features of real
images. Because it is hard to obtain real–synthetic image pairs, Shrivas-
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tava et al., 2017 recently proposed a synthetic-to-real refinement network
requiring only unpaired examples. However, the extent of refinement is
limited due to pixel-wise similarity constraints to the input. In contrast,
the unpaired image-to-image translation work of Zhu et al., 2017 relaxes
these constraints to finding a bijection between the two domains.

4.2.2 Proposed Dataset GANerated Hands

In order to account for the disparity between synthetic and real images,
this thesis proposes an image-to-image translation network, the Geo-
ConGAN, with the objective to translate synthetic to real images. Most
importantly, this network only requires unpaired real and synthetic im-
ages for training, and employs a novel geometric consistency constraint
to ensure valid annotation transfer. Note that for both the real and the
synthetic data only foreground-segmented images that contain a hand
on white background are used. This facilitates training and focuses the
network capacity on the hand region.

real hand image acquisition. A green-screen setup is used to
capture real hand images with varying poses and camera extrinsics from
7 different subjects with different skin tones and hand shapes. In total,
28,903 real hand images were captured using a desktop webcam with
image resolution 640× 480 pixels.

synthetic hand image generation. The synthetic hand image
dataset is based on the SynthHands dataset. For each image, a version
without the object is rendered to facilitate the task for the GeoConGAN.
Furthermore, the background is set to plain white.

geometrically consistent cyclegan (geocongan). Training
a hand joint regression network based on synthetic images alone has the
strong disadvantage that the so-trained network has limited generaliza-
tion to real images (see Section 6.5.1 for the corresponding experiment).

To tackle this problem, this thesis proposes a network that translates
synthetic images to “real” (or GANerated) images. The translation network
is based on CycleGAN (Zhu et al., 2017), which uses adversarial discrimi-
nators (Goodfellow et al., 2014) to simultaneously learn cycle-consistent
forward and backward mappings. Cycle-consistency means that the com-
position of both mappings (in either direction) is the identity mapping. In
particular, mappings from synthetic to real images (synth2real), and from
real to synthetic images (real2synth) are learned. In contrast to many exist-
ing image-to-image or style transfer networks (Isola et al., 2017; Sangkloy
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Figure 4.4: Network architecture of the GeoConGAN. The trainable part comprises
the real2synth and the synth2real components, where both components are shown
twice for visualization purposes. The loss functions are shown in black, images
from the database in green boxes, images generated by the networks in blue
boxes, and the existing SilNet in orange boxes.

et al., 2017), CycleGAN has the advantage that it does not require paired
images, i.e., there does not need to exist a real image counterpart for a
given synthetic image, which is crucial for the purpose chosen in this
thesis due to the unavailability of such pairs.

The architecture of the proposed GeoConGAN is illustrated in Figure 4.4.
The input to this network are (cropped) synthetic and real images of
the hand on a white background in conjunction with their respective
silhouettes, i.e., foreground segmentation masks. In its core, the GeoCon-
GAN resembles CycleGAN (Zhu et al., 2017) with its discriminator and
cycle-consistency loss, as well as the two trainable translators synth2real
and real2synth. However, unlike CycleGAN, an additional geometric con-
sistency loss GeoCon is incorporated that ensures that the real2synth and
synth2real components produce images that maintain the hand pose during
image translation. In particular, the geometric consistency loss enforces
the silhouette of the generated image f (X) to be the same as the silhou-
ette of the original real or synthetic image X using the cross-entropy (CE)
classification loss

GeoCon(X) = CE(sil(X), sil( f (X))) , f ∈ {real2synth, synth2real} .
(4.1)

Enforcing consistent hand poses is of utmost importance in order to
ensure that the ground-truth joint locations of the synthetic images are
also valid for the “real” images produced by synth2real. Figure 4.5 shows
the benefits of adding this new loss term.

The silhouettes of the original synthetic or real images are obtained
from either the synthetic rendering or green-screen segmentation. In
order to extract the silhouettes of the images that are produced by both
real2synth and synth2real (blue boxes in Figure 4.4), a binary classification
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Synthetic CycleGAN GANerated Synthetic CycleGAN GANerated

Figure 4.5: The GeoConGAN translates from synthetic to real images by using an
additional geometric consistency loss.

Synthetic GANerated GANerated
+ BG

Synthetic GANerated GANerated
+ BG + FG

Figure 4.6: Two examples of synthetic images with background/object masks in
green/pink, GANerated images, and GANerated images with background (and
foreground) augmentation.

network, the SilNet, is used. It is based on a simple UNet (Ronneberger
et al., 2015) that has three 2-strided convolutions and three deconvolu-
tions. Note that this is a relatively easy task as the images have white
background. However, choosing a differentiable network over naïve thresh-
olding makes the training of GeoConGAN more well-behaved. The SilNet
is trained beforehand on a small disjoint subset of the data and is fixed
while training synth2real and real2synth. Details can be found in Ap-
pendix A.1.

data augmentation. Once the GeoConGAN is trained, all syntheti-
cally generated images are fed into the synth2real component to obtain the
GANerated Hands dataset, a dataset of “real” images that have associated
ground truth 3D joint locations.

By using the background masks from the original synthetic images,
background augmentation can be performed by compositing GANerated
images (foreground) with random images (background) (Mehta et al.,
2017b; Rhodin et al., 2016; Varol et al., 2017). Similarly, the data can be
augmented with a randomly textured object by leveraging the object
masks produced when rendering the original synthetic sequences (see
Section 4.1). Training on images without background or objects and hence
employing data augmentation as post processing significantly eases the
task for the GeoConGAN. Figure 4.6 shows some GANerated images.
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Figure 4.7: Example depth frames and automatically generated labels from the
proposed paint-based hand part classification (top) and hand segmentation
(bottom) datasets.

4.3 hand segmentation and part classification

The previous two sections have focused on obtaining data with 3D key-
point annotations that are key to develop the hand pose estimation
methods presented in Chapters 5 and 6. A different, but similarly impor-
tant, task that often precedes hand pose estimation is hand segmentation
or part classification. Given an input image, the desired output is a
segmentation mask which specifies for each pixel which hand or hand
part is visible. This thesis explores creation and automatic annotation of
depth-based segmentation datasets for different use cases.

The automatic annotation is based on simultaneous recording with a
calibrated depth and RGB camera. Then, the hands or hand parts can
be color-coded using body paint or colored gloves. By exploiting the
RGB image stream in combination with the calibration information, the
pixels in the depth image can be automatically annotated using color
thresholding. More formally, let Ic, Id ∈ R3×3 be the intrinsic camera
matrices for the RGB and depth camera, respectively, and let Ed2c ∈ R3×4

be the extrinsic matrix transforming from the depth camera coordinate
system to the RGB camera coordinate system. For each pixel (u, v) in
the depth image D, a color value can be assigned based on the corre-
sponding pixel in the RGB image C, resulting in a colored depth image
B. In the following calculation, the conversions of vectors to and from
homogeneous coordinates are usually dropped for brevity. They can be
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inferred from the matrix dimensions. First, the pixel in the depth image
is back-projected to a ray in the 3D depth camera coordinate system

ray(u, v) = I−1
d ·

u

v

1

 . (4.2)

Since the depth of the pixel in camera space is known, the corresponding
3D point pu,v can be determined by scaling the back-projected ray such
that its z coordinate corresponds to the depth

Π−1
d (u, v) = D(u, v) · unitz(ray(u, v)) , (4.3)

where the operator unitz scales a vector such that its z coordinate is 1.
The obtained 3D point pu,v is then tranformed to the coordinate system
of the RGB camera and projected to the color image plane

Πc(p
u,v) = unitz(Ic · Ed2c · pu,v) . (4.4)

Hence, the colored depth image B is computed as

B(u, v) = C(Πc(Π−1
d (u, v))) . (4.5)

The classification label for pixel (u, v) is then obtained by thresholding
B(u, v) in HSV color space. The HSV color space has the advantage that
it exhibits a better separation of shading effects in comparison to the
RGB color space. The hands or hand parts of the user can either be
colored using body paint or colored gloves. Both choices have unique
advantages and disadvantages. Gloves can be re-used for different users,
however the fit might not be tight, leading to distorted hand shapes in
the depth image or sliding of the hand part boundaries. Body paint is
more time-consuming to apply but it does preserve the original shape
and supports more accurate boundaries for hand parts.

During the course of this thesis, two paint-based segmentation datasets
were recorded and successfully employed for hand tracking tasks. The
first one focuses on left/right hand segmentation for tracking of close two-
hand interactions (used in Chapter 7). The second one contains hand part
labels and enables hand tracking for recognizing various microgestures
(used in Chapter 8). The paint-based capture setup is shown in Figure 4.8.
Please see Figure 4.7 for example frames from both datasets and Table 4.2
for more details.

In addition to the two datasets presented in this thesis, contributions
were also made to a more large-scale glove-based two-hand segmentation
dataset and a novel segmentation method using a lightweight neural
network architecture (Bojja et al., 2019).
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Figure 4.8: Setup (left) and recording (right) of the paint-based hand part
classification dataset.

Table 4.2: Details about depth-based segmentation datasets.

Property Segmentation Dataset Parts Dataset

Task two-hand interactions single-hand microgestures

Annotation
3 classes: left, right,

background

7 classes: one per finger,

palm, background

Users 3 (1 female, 2 male) 5 (2 female, 3 male)

Viewpoints
egocentric (shoulder),

frontal

egocentric (shoulder

and head)

Frames 19,926 66,662

4.4 densehands dataset

While hand segmentation and part classification assign discrete labels
to pixels, dense correspondence regression extends these concepts to
continuous hand surface locations. Given an input image, the desired
output is a dense correspondence image. For each pixel, it contains a k-
dimensional feature vector that uniquely determines the 3D hand surface
point that is visible at this pixel. These correspondences can greatly help
in fitting a hand model to an input image since they are significantly
more accurate and robust compared to naïvely using closest points as
correspondence. The corresponding experiment will be presented in a
later chapter of the thesis (Section 7.5.2).
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4.4.1 Dense Correspondence Encoding

The dense correspondence encoding is the function η : S → [0, 1]k that
maps every 3D surface location of the hand model to a unique value in
[0, 1]k. Dimensionality k = 3 is used in the thesis.

backfront

3.

1. 2.

Figure 4.9: (1) The hand mesh is first
transformed to a space where Euclidean
and geodesic distances are approxi-
mately the same. (2) Then, this embed-
ded mesh is colored using an HSV color
cylinder. (3) The vertex colors are trans-
ferred back to the original hand mesh
to be used as dense correspondence en-
coding. Notice that front and back color
assignments differ in saturation, espe-
cially in the palm area.

naïve encoding . A naïve en-
coding can be obtained by plac-
ing the hand surface mesh into the
3D unit cube and using the 3D lo-
cation directly for η. This leads
to similar encoding values for
spatially close locations with re-
spect to Euclidean distance. For ex-
ample, adjacent fingertips would
have similar values hence leading
to easy confusion. Instead of Eu-
clidean distance, the geodesic dis-
tance on the surface should be
used for constructing η.

geodesics-based encoding .
Figure 4.9 shows the different
steps to obtain a geodesics-based
encoding. First, multi-dimensional
scaling (Bronstein et al., 2006) is
used to transform the 3D hand
mesh into a space where Euclidean
distance (approximately) resem-
bles geodesic distance. Subsequently, an HSV color space cylinder is
mapped onto the embedded hand mesh such that different hues are
mapped onto different fingers. The resulting values are transferred to the
original mesh to obtain the dense corresponding encoding η. Later in the
thesis (Section 7.5.2), it is demonstrated that the proposed geodesic HSV
embedding leads to improved results compared to the naïve embedding.

extension to two hands . The dense correspondence encoding η

can be easily extended to two hands by increasing the dimensionality to
k + 1, where the last dimension indicates handedness (0: left hand, 0.5:
right hand).
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Figure 4.10: The synthetic DenseHands dataset is generated by tracking two
hands, separated by a safety distance, which are used to control in real time
a physically-based simulation of two interacting hands in the virtual scenario
(left). The output are depth maps (top right) and dense surface annotations
(bottom right) of the resulting simulation.

4.4.2 Data Generation

In the following, the generation of the DenseHands dataset is described.
The goal is to provide dense correspondence annotation for two naturally
interacting hands. Since this annotation cannot be obtained manually, the
data is generated synthetically in a simulation system.

The simulation is driven by skeletal hand motion capture (mocap)
data (LeapMotion, 2016) to maximize natural hand motion. However,
existing hand motion capture solutions cannot robustly deal with close
and complex hand-hand interactions. Hence, the actors move both hands
at a safety distance in the real world while this offset is subtracted in
the simulator. An extension of the work of Verschoor et al., 2018 is used
for physics simulation. It enables simultaneous two hand simulation
and guarantees plausible and intersection-free hand poses. Note that the
proposed motion capture and simulation framework runs live such that
the user can accomodate to driving the hand models which are virtually
moved closer together. The actor receives immediate visual feedback and
is thus able to simulate natural interactions. Figure 4.10 depicts a live
session of this data generation step.

The hand simulator consists of an articulated skeleton surrounded by a
low-resolution finite-element soft tissue model. The hands of the actor are
tracked using LeapMotion, 2016, and the mocap skeletal configuration is
linked through viscoelastic springs (a.k.a. PD controller) to the articulated
skeleton of the hand simulator. In this way, the hand closely follows
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the mocap input during free motion, yet it reacts to contact. The hand
simulator resolves inter-hand collisions using a penalty-based frictional
contact model, which provides smooth soft tissue interactions at minimal
computational cost. The soft tissue layer is particularly helpful at allowing
smooth and natural motions in highly constrained situations such as
interlocking fingers. As the hands are commanded by the mocap input,
their motion is inherently free of intra-hand collisions. However, the
simulated inter-hand interaction may produce finger motions that lead to
intra-hand collisions. These are usually small enough to be negligible and
thus self-collision handling was avoided to maintain real-time interaction
at all times.

After obtaining the simulated two-hand motion data driven by 5 actors,
the scenes are re-rendered from different virtual viewpoints to create
the DenseHands dataset with a total of 80,000 frames. The output of
this data generation step is a depth image for each simulated frame as
well as the dense correspondence image of the hand meshes colored
with the encoding η. The fixed value 14 is used for non-hand pixels.
Additionally, the generated depth images are post-processed to mimic
typical structured-light sensor noise at depth discontinuities.

4.5 conclusion

After having introduced diverse hand datasets and smart ways to au-
tomatically generate annotations in this chapter, the following chapters
present various real-time 3D hand reconstruction methods that make use
of the presented datasets.



5
R E A L - T I M E 3 D H A N D T R A C K I N G U N D E R
O C C L U S I O N

This chapter presents an approach for real-time, robust and accurate
3D hand pose estimation from a moving egocentric RGB-D camera in
cluttered real environments (published as Mueller et al., 2017). Existing
methods typically fail for hand-object interactions in cluttered scenes
imaged from egocentric viewpoints—common for virtual or augmented
reality applications. The proposed approach uses two subsequently ap-
plied Convolutional Neural Networks (CNNs) to localize the hand and
regress 3D joint locations. Hand localization is achieved by using a CNN
to estimate the 2D position of the hand center in the input, even in the
presence of clutter and occlusions. The localized hand position, together
with the corresponding input depth value, is used to generate a normal-
ized cropped image that is fed into a second CNN to regress relative
3D hand joint locations in real time. For added accuracy, robustness and
temporal stability, pose estimates are refined using a kinematic pose track-
ing energy. To train the CNNs, the SynthHands dataset (see Section 4.1)
was introduced. It was captured using a merged reality approach and
large amounts of annotated data were synthesized, depicting natural
hand interaction in cluttered scenes. Through quantitative and qualitative
evaluation, it is shown that the method is robust to self-occlusion and
occlusions by objects, particularly in moving egocentric perspectives.

5.1 introduction

Estimating the full articulated 3D pose of hands is becoming increasingly
important due to the central role that hands play in everyday human
activities. Applications in activity recognition (Rohrbach et al., 2012),
motion control (Zhao et al., 2013), human–computer interaction (Sridhar
et al., 2015b), and virtual/augmented reality (VR/AR) require real-time
and accurate hand pose estimation under challenging conditions. Spurred
by recent developments in commodity depth sensing, several methods
that use a single RGB-D camera have been proposed (Ge et al., 2016; Qian
et al., 2014; Sridhar et al., 2015a; Tagliasacchi et al., 2015; Taylor et al., 2016;
Wan et al., 2017). In particular, methods that use convolutional neural
networks, possibly in combination with model-based hand tracking,
have been shown to work well for static, third-person viewpoints in

35
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Figure 5.1: This thesis presents an approach to track the full 3D pose of the
hand from egocentric viewpoints (left), a challenging problem due to additional
self-occlusions, occlusions from objects and background clutter. The method can
reliably track the hand in 3D even under such conditions using only RGB-D
input. This figure shows tracking results overlaid with color and depth map
(center), and visualized from virtual viewpoints (right).

uncluttered scenes (Oberweger et al., 2015; Sinha et al., 2016; Tompson
et al., 2014), i.e., mostly for free hand motion in mid-air, a setting that is
uncommon in natural hand interaction.

However, real-time hand pose estimation from moving, first-person
camera viewpoints in cluttered real-world scenes where the hand is often
occluded as it naturally interacts with objects, remains an unsolved prob-
lem. Occlusions, cluttered backgrounds, manipulated objects, and field-
of-view limitations make this scenario particularly challenging. CNNs
are promising to tackle this problem but typically require large amounts
of annotated data which is hard to obtain since markerless hand tracking
(even with multiple views), and manual annotation on a large scale is
infeasible in egocentric settings due to (self-)occlusions, cost, and time.
Even semi-automatic annotation approaches (Oberweger et al., 2016)
would fail if large parts of the hand are occluded. Synthetic data, on the
other hand, is inexpensive, easier to obtain, removes the need for manual
annotation, and can produce accurate ground truth even under occlusion.

This thesis presents the first method that supports real-time egocentric
hand pose estimation in real scenes with cluttered backgrounds, occlu-
sions, and complex hand-object interactions using a single commodity
RGB-D camera (see Figure 5.1). The task of per-frame hand pose esti-
mation is divided into: (1) hand localization, and (2) 3D joint location
regression. Hand localization, an important task in the presence of scene
clutter, is achieved by a CNN that estimates the 2D image location of the
center of the hand. Further processing results in an image-level bounding



5.2 overview 37

box around the hand and the 3D location of the hand center (or of the
occluding object directly in front of the center). This output is fed into
a second CNN that regresses the relative 3D locations of the 21 hand
joints. Both CNNs are trained with the SynthHands dataset, a large dataset
of fully annotated data which was obtained by combining hand-object
interactions with real cluttered backgrounds using a new merged reality
approach (see Section 4.1). This increases the realism of the training
data since users can perform motions to mimic manipulating a virtual
object using live feedback of their hand pose. These motions are rendered
from novel egocentric views using a framework that realistically models
RGB-D data of hands in natural interaction with objects and clutter.

The 3D joint location predictions obtained from the CNN are accurate
but suffer from kinematic inconsistencies and temporal jitter expected in
single frame pose estimation methods. To overcome this, the estimated
3D joint locations are refined using a fast inverse kinematics pose tracking
energy that uses 3D and 2D joint location constraints to estimate the
joint angles of a temporally smooth skeleton. Together, this results in the
first real-time approach for smooth and accurate hand tracking even in
cluttered scenes and from moving egocentric viewpoints. The accuracy,
robustness, and generality of the proposed approach are demonstrated on
the new benchmark dataset EgoDexter with moving egocentric cameras
in real cluttered environments. In summary, the contributions of this
chapter are:

• A novel method that localizes the hand and estimates, in real
time, the 3D joint locations from egocentric viewpoints, in clutter,
and under strong occlusions using two CNNs. A kinematic pose
tracking energy further refines the pose by estimating joint angles
of a temporally smooth tracking.

• Extensive evaluation on the new annotated real benchmark dataset
EgoDexter featuring egocentric cluttered scenes, diverse users, and
interaction with objects.

5.2 overview

The goal is to estimate the full 3D articulated pose of the hand imaged
with a single commodity RGB-D sensor. The RGB and depth channels
from the Intel RealSense SR300 (IntelRealSenseSR300, 2016) are used,
both with a resolution of 640×480 pixels and captured at 30 Hz. The
hand pose estimation is formulated as an energy minimization problem
that incorporates per-frame pose estimates into a temporal tracking
framework. The goal is to find the joint angles of a kinematic hand
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Figure 5.2: Overview of the proposed method. Starting from an RGB-D frame,
the 2D hand position heatmap is regressed using the CNN HALNet and a
cropped frame is computed. A second CNN, JORNet, is used to predict root-
relative 3D joint positions as well as 2D joint heatmaps. Both CNNs are trained
with the new SynthHands dataset. Finally, the joint angles of a kinematic skeleton
are obtained via a pose tracking step.

skeleton (Section 3.1) that best represent the input observation. Similar
strategies have been shown to be successful in state-of-the-art methods
(Qian et al., 2014; Sridhar et al., 2015a, 2016; Taylor et al., 2016) that
use per-frame pose estimation to initialize a tracker that refines and
regularizes the joint angles of a kinematic skeleton for free hand tracking.
However, the per-frame pose estimation components of these methods
struggle under strong occlusions, hand-object interactions, scene clutter,
and moving egocentric cameras. The proposed approach overcomes this
limitation by combining a CNN-based 3D pose regression framework,
that is tailored for this challenging setting, with a kinematic skeleton
tracking strategy for temporally stable results.

The task of hand pose estimation is divided into several subtasks (Fig-
ure 5.2). First, hand localization (Section 5.3.1) is achieved by a CNN that
estimates an image-level heatmap (that encodes position probabilities)
of the root — a point which is either the hand center (knuckle of the
middle finger, shown with a star shape in Figure 5.3) or a point on an
object that occludes the hand center. The 2D and 3D root positions are
used to extract a normalized cropped image of the hand. Second, 3D
joint regression (Section 5.3.2) is achieved with a CNN that regresses root-
relative 3D joint locations from the cropped hand image. Both CNNs are
trained with the SynthHands dataset which contains large amounts of
annotated data which were generated with a novel framework to auto-
matically generate 3D hand joint motion with natural hand interaction
(Sections 4.1 and 5.3.3). Finally, the regressed 3D joint positions are used
in a kinematic pose tracking framework (Section 5.4) to obtain temporally
smooth tracking of the hand motion.
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5.3 single frame 3d pose regression

The goal of 3D pose regression is to estimate the 3D joint locations of
the hand at each frame of the RGB-D input. Note that the regressed 3D
location (as shown in Figure 5.3) coincide with the joints and fingertips of
the kinematic hand skeleton (Section 3.1), hence guaranteeing a consistent
representation for the pose fitting step. For the regression of 3D joint

Figure 5.3: The 3D joint regression
step outputs J = 21 global 3D joint
locations, shown in green, which are
later used to estimate the joint an-
gles of a kinematic skeleton hand
model. The orange star depicts the
joint used as a hand root.

locations, first, a colored depth map D is
created from the raw input produced
by commodity RGB-D cameras (e.g.,
Intel RealSense SR300). D is defined
as

D = colormap(R, G, B, Z) , (5.1)

where colormap(·) is a function, that
depends on the camera calibration pa-
rameters, to obtain the corresponding
color pixel for each pixel in the depth
map Z. Computing D allows to ignore
camera-specific variations in extrinsic
parameters. D is also downsampled
to a resolution of 320×240 to aid real-
time performance. Next, the pose re-
gression approach that is robust even
in challenging cluttered scenes with
notable (self-)occlusions of the hand is described. As shown in the evalu-
ation (Section 5.5), using a two-step approach to first localize the hand in
full-frame input and subsequently estimate 3D pose outperforms using a
single CNN for both tasks.

5.3.1 Hand Localization

The goal of the first part of pose regression is to localize the hand in
challenging cluttered input frames resulting in a bounding box around
the hand and 3D root location. Given a colored depth map D, a crop is
computed as

D̃ = imcrop(D, HR) , (5.2)

where HR is a heatmap encoding the position probability of the 2D hand
root and imcrop(·) is a function that crops the hand area of the input
frame. In particular, HR is estimated using a CNN which is called HALNet
(HAnd Localization Net). The imcrop(·) function picks the image-level
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heatmap maximum location φ(HR) = (u, v) and uses the associated
depth z in D to compute a depth-dependent crop, the side length of
which is inversely proportional to the depth and contains the hand.
Additionally, imcrop(·) also normalizes the depth component of the
cropped image by subtracting z from all pixels.

HALNet uses an architecture derived from ResNet50 (He et al., 2016)
which has been shown to have a good balance between accuracy and com-
putational cost (Canziani et al., 2016). The number of residual blocks was
reduced to 10 to achieve real-time framerate while maintaining high accu-
racy. This network is trained using SynthHands, a new synthetic dataset
with ample variance across many dimensions such as hand pose, skin
color, objects, hand-object interaction and shading details (Section 4.1).
See Section 5.3.3 and Appendix A.2 for training and architecture details.

post processing . To make the estimation of the root maximum loca-
tion robust over time, an additional step is added to prevent outliers from
affecting 3D joint location estimates. A history of maximum locations is
maintained and they are labeled as confident or uncertain based on the
following criterion. If the likelihood value of the heatmap maximum at a
frame t is < 0.1 and it occurs at > 30 pixels from the previous maximum
then it is marked as uncertain. If a maximum location is uncertain, it is
updated as

φt = φt−1 + δk φc−1 − φc−2

||φc−1 − φc−2||
, (5.3)

where φt = φ(Ht
R) is the updated 2D maximum location at the frame t,

φc−1 is the last confident maximum location, k is the number of frames
elapsed since the last confident maximum, and δ is a decay factor to pro-
gressively downweight uncertain maxima. The decay factor is empirically
set δ = 0.98 and used in all results.

5.3.2 3D Joint Regression

Starting from a cropped and normalized input D̃ that contains a hand,
potentially partially occluded, the goal is to regress the global 3D hand
joint position vector pG ∈ R3×J . A CNN, referred to as JORNet (JOint
Regression Net), is used to predict per-joint 3D root-relative positions
pL ∈ R3×J in D̃. Additionally, JORNet also regresses per-joint 2D position
likelihood heatmaps H = {Hj}J

j=1, which will be used to regularize the
predicted 3D joint positions in a later step. Global 3D joint positions are
obtained as pG

j = pL
j + r, where r is the global position of the hand center

(or a point on an occluder) obtained by backprojecting the 2.5D hand root
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position (u, v, z) to 3D. JORNet uses the same architecture as HALNet and
is trained with the same data (Section 4.1). See Section 5.3.3 for training
details and Appendix A.2 for architecture details.

5.3.3 Training

Both HALNet and JORNet are trained on the egocentric data from the
SynthHands dataset. Importantly, note that SynthHands does not contain
3D scans of the real test objects nor 3D models of similar objects used for
evaluation in Section 5.5. This demonstrates that the proposed approach
generalizes to unseen objects.

The CNNs are trained using the Caffe framework (Jia et al., 2014),
and the AdaDelta solver (Zeiler, 2012) with a momentum of 0.9 and
weight decay factor of 0.0005. The learning rate is tapered down from
0.05 to 0.000025 during the course of the training. For training JORNet, the
ground-truth (u, v) and z of the hand root is used to create the normalized
crop input. To improve robustness, uniform noise (∈ [−25, 25] mm) is
added to the backprojected 3D root position in the SynthHands dataset.
HALNet is trained for 45,000 iterations and JORNet for 60,000 iterations.
The final networks were chosen as the ones with the lowest loss values.
The layers in the networks that are similar to ResNet50 are initialized
with weights of the original ResNet50 architecture trained on ImageNet
(Russakovsky et al., 2015). For the other layers, the weights are initialized
randomly. For details of the loss weights used and the taper scheme,
please see Appendix A.2.

5.4 hand pose optimization

The estimated per-frame global 3D joint positions pG are not guaranteed
to be temporally smooth nor do they have consistent inter-joint distances
(i.e., bone lengths) over time. This is mitigated by fitting a kinematic
skeleton parameterized by joint angles θ, as introduced in Section 3.1,
to the regressed 3D joint positions. Additionally, the fitting is refined
by leveraging the 2D heatmap output from JORNet as an additional
contraint and is regularized using joint limit and smoothness constraints.
In particular, the goal is to minimize

E(θ) = Edata(θ, pG, H) + Ereg(θ) , (5.4)

where Edata is the data term that incorporates both the 3D positions and
2D heatmaps

Edata(θ, pG, H) = wp3Epos3D(θ, pG) + wp2Epos2D(θ, H) . (5.5)
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The first term Epos3D minimizes the 3D distance between each predicted
joint location pG

j and its corresponding positionM(θ)j in the kinematic
skeleton set to pose θ

Epos3D(θ) =
J

∑
j=1
||M(θ)j − pG

j ||22 . (5.6)

The second data term, Epos2D, minimizes the 2D distance between each
joint heatmap maximum φ(Hj) and the projected 2D location of the
corresponding joint in the kinematic skeleton

Epos2D(θ) =
J

∑
j=1
||Π(M(θ)j)− φ(Hj))||22 , (5.7)

where Π projects the joint onto the image plane. The weights for the
different terms were empirically tuned as: wp3 = 0.01 and wp2 = 5× 10−7.

The data terms are regularized by enforcing joint limits and temporal
smoothness constraints

Ereg(θ) = wlElim(θ) + wtEtemp(θ) (5.8)

where

Elim(θ) = ∑
θi∈θ


0 , if θl

i ≤ θi ≤ θu
i

(θi − θl
i )

2 , if θi < θl
i

(θu
i − θi)

2 , if θi > θu
i

(5.9)

is a soft prior to enforce biomechanical pose plausibility, with θl ,θu being
the lower and upper joint angle limits, respectively, and

Etemp(θ) = ||∇θ−∇θ(t−1)||22 (5.10)

enforces constant velocity to prevent dramatic pose changes. The weights
for the regularizers were empirically chosen as: wl = 0.03 and wt = 10−3.
The objective is optimized using 20 iterations of conditioned gradient
descent.

5.5 results and evaluation

Several experiments were conducted to evaluate the proposed method
and different components of it. To facilitate evaluation and to test the
generalization capability to real data, the new real benchmark dataset
EgoDexter was captured. In addition, to enable evaluation of the different
components of the proposed method, a synthetic test set consisting of
5120 fully annotated frames from the SynthHands dataset was held out.
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Figure 5.4: Comparison of 2D (left) and 3D (right) error of the joint position
estimates of JORNet. JORNet was initialized with either the ground truth (“GT”,
blue n) or with the proposed hand localization step (“HL”, orange n). It can be
observed that HL initialization does not substantially reduce the performance
of JORNet. As expected, fingertips-only errors (dashed lines) are higher than the
errors for all joints.

5.5.1 Benchmark Dataset EgoDexter

EgoDexter consists of 3190 frames of natural hand interactions with
objects in real cluttered scenes, moving egocentric viewpoints, complex
hand-object interactions, and natural lighting. Of these, 1485 frames were
manually annotated using an annotation tool to mark 2D and 3D fingertip
positions, a common approach used in free hand tracking (Ballan et al.,
2012; Sridhar et al., 2013). In total 4 sequences were gathered (Rotunda,
Desk, Kitchen, Fruits) featuring 4 different users (2 female), skin color
variation, background variation, different objects, and camera motion.
Note that the objects in EgoDexter are distinct from the objects in the
SynthHands training data to show the ability of the approach to generalize.

5.5.2 Component Evaluation: HALNet and JORNet

First, the performance of HALNet and JORNet on the synthetic test set
is analyzed. The main goal of HALNet is to accurately localize the 2D
position of the root (which either lies on the hand or on an occluder in
front) accurately. Thus, the 2D Euclidean pixel error between the ground
truth root position and the predicted position is used as the evaluation
metric. On average, HALNet produces an error of 2.2 px with a standard
deviation of 1.5 px on the test set. This low average error ensures that
reliable crops are obtained for JORNet.

To evaluate JORNet, the 3D Euclidean distance between ground-truth
joint positions (of all hand joints) and the predicted position is used as
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(b) Using only the 2D fitting energy leads to
catastrophic tracking failure on all sequences.
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ity and temporal smoothness. The full formu-
lation that combines 2D as well as 3D terms
yields the lowest error.

Figure 5.5: Ablative analysis of (a) different CNN architectures and (b) the
proposed kinematic pose tracking on the real annotated dataset EgoDexter.

the error metric. For comparison, also the errors for only the 3D fingertip
positions are reported which are a stricter measure of performance. Since
the output of JORNet is dependent on the crop estimated in the hand
localization step, two conditions are evaluated: (1) using ground-truth
crops (“GT”, blue n), (2) using crops from the hand localization step
(“HL”, orange n). This helps evaluate how hand localization affects the
final joint positions. Figure 5.4 shows the percentage of the test set that
produces a certain 2D or 3D error for all joints and fingertips only. For 3D
error, using ground-truth crops is better than using the crops from the
hand localization. The difference is not substantial which shows that the
hand localization step does not lead to catastrophic failures of JORNet.
For 2D error, however, JORNet initialized with HL results in marginally
better accuracy. The hypothesis is that this is because JORNet is trained
on noisy root positions (Section 5.3.3) while the ground truth lacks any
such noise.

5.5.3 Ablation Study

In the following, different design choices for the proposed method are
evaluated: the structure of the CNN regressor, the type of input data, and
the kinematic model fitting energy.
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Figure 5.6: 2D predictions (top row), 3D predictions (middle row) and tracked
skeleton (bottom row) on the real annotated sequence Fruits. The combination
of 2D and 3D predictions in the tracking framework leads to better results than
either of the predictions in isolation.

cnn structure evaluation. It is shown that, on the real annotated
benchmark EgoDexter, the proposed approach that uses two subsequently
applied CNNs is better than a single CNN to directly regress joint
positions in cluttered scenes. The CNN for comparison was trained with
the same architecture as JORNet but with the task of directly regressing
3D joint positions from full frame RGB-D images which often have large
occlusions and scene clutter. Figure 5.5a shows that the 3D fingertip
error plot for this CNN (“single RGB-D”, yellow n) is worse than for the
proposed two-step approach (blue n). This demonstrates that learning
to directly regress 3D pose in cluttered scenes with occlusion is a harder
task, which can be simplified by breaking it into two steps.

input data evaluation. Next, it is shown, on the EgoDexter dataset,
that using both RGB and depth input (RGB-D) is superior to using
only depth, even when using both of the proposed CNNs. Figure 5.5a
compares the 3D fingertip error of a variant of the proposed two-step
approach trained with only depth data (“2-step Depth”, orange n). The
result indicates that additional color cues help the approach perform
significantly better.

gain by kinematic model . Figure 5.6 depicts the predicted joints
by each of the key components of the proposed pipeline — 2D predictions,
3D predictions, and final tracked skeleton — on the test sequence Fruits.
Note that the modes of failure for the 2D and 3D predictions are different
which leads to accurate skeleton tracking even if one kind of prediction
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is incorrect. Thus, the combination of 2D and 3D predictions with the
tracking framework consistently produces the best results. This is also
quantitatively shown in Figure 5.5b, which provides an ablative analysis
of the energy terms as well as the effect of kinematic pose tracking on the
final pose estimate. Because the pose tracking energy enforces joint angle
limits, temporal smoothness, and consistent bone lengths, the combined
approach produces the lowest average error of 32.6 mm.

5.5.4 Comparison to the State of the Art

It was not possible to quantitatively evaluate on the only other exist-
ing egocentric hand dataset at the time (Rogez et al., 2015) due to
a different sensor currently unsupported by the proposed approach.

Figure 5.7: In contrast to the proposed
method, LeapMotion Orion fails under
large occlusions.

Using the proposed method with
the Senz3D camera requires adap-
tation of intrinsic camera param-
eters and noise characteristics for
training. However, to provide a vi-
sual comparison to evaluate the
proposed method, sequences that
mimic sequences used by Rogez
et al., 2015 were recorded, and a
qualitative evaluation is shown in
Figure 5.8. The proposed method
achieves significantly more accu-
rate hand tracking, while running
in real time.

To show the completely different nature of the problem tackled by the
proposed approach, which cannot be solved by employing state-of-the-
art methods for hand tracking in free air, the method of Sridhar et al.,
2015a was applied to the real test sequences from EgoDexter. Figure 5.9
demonstrates catastrophic failures of the aforementioned approach. On
the other hand, Figure 5.10 shows how the proposed method successfully
tracks sequences mimicked from the work of Sridhar et al., 2015a. The
proposed approach achieves comparable results, with improved stability
of the hand root position. Figure 5.7 also shows that the commercial
solution LeapMotion, 2016 does not work well under severe occlusions
caused by objects in contrast to the proposed approach.
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Proposed Rogez et al. Proposed Rogez et al.

Pinch Sponge

Grab Knife

Reach Cupboard

Grab Bottle

Write in Notebook

Open Book

Figure 5.8: Qualitative evaluation of the proposed method and Rogez et al., 2015.
The motions originally used by Rogez et al., 2015 are mimicked because, due to
sensor differences (i.e., lens intrinsics, etc.), the trained CNNs cannot directly
run on their data.
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Figure 5.9: Qualitative results produced by the approach of Sridhar et al.,
2015a on the benchmark dataset EgoDexter. The close proximity of the arm
to the camera and the interaction with objects and the environment leads to
catastrophic failures.
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Proposed Sridhar et al. Proposed Sridhar et al.

Figure 5.10: Qualitative comparison between the proposed method and Sridhar
et al., 2015a, mimicking some of their sequences.

5.5.5 Qualitative Results

Figure 5.11 shows qualitative results from the proposed approach which
works well for challenging real world scenes with clutter, hand-object in-
teractions, and different hand shapes. Even though the machine learning
components were only trained on the egocentric data from SynthHands,
Figure 5.12 demonstrates the generalizability to 3rd-person views. Note
that the hand localization step is robust to other skin-colored parts, like
faces, in the input.

Rotunda Desk Fruits Kitchen

Figure 5.11: Qualitative results on the real annotated test sequences from the
EgoDexter benchmark dataset. The results overlayed on the input images and
the corresponding 3D view from a virtual viewpoint (bottom row) show that
the proposed approach is able to handle complex object interactions, strong
self-occlusions and a variety of users and backgrounds.
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Figure 5.12: Despite being trained for egocentric views, the proposed approach
in fact generalizes to 3rd-person views. In addition, it is robust to the presence
of other skin-colored body parts.

5.5.6 Runtime Performance

The entire method runs in real-time on an Intel Xeon E5-2637 CPU
(3.5 GHz) with an Nvidia Titan X (Pascal). Hand localization takes 11 ms,
3D joint regression takes 6 ms, and kinematic pose tracking takes 1 ms.

5.6 limitations and future work

Figure 5.13: Failures in the hand localiza-
tion step (left) or fast motion that leads
to misalignment in the colored depth
image (right) can cause incorrect pose
estimates.

The proposed method works well
even for challenging egocentric
viewpoints and notable occlusions.
However, there are some failure
cases which are shown in Fig-
ure 5.13, e.g., due to very strong oc-
clusions or color–depth misalign-
ment. Figure 5.14 depicts the re-
sults from several intermediate
steps of the method in case of fail-
ure. In particular, the figure shows
errors due to extreme self occlu-
sions, severe hand and object oc-
clusions, and when the hand is located out of the camera field of view.

Large amounts of synthetic data were used for training the proposed
CNNs and simulated sensor noise for a specific camera preventing gener-
alization. In the future, the application of deep domain adaptation (Ganin
and Lempitsky, 2015) could be explored which offers a way to jointly
make use of labeled synthetic data together with unlabeled or partially
labeled real data (see Section 4.2 and Chapter 6).
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Figure 5.14: The failure cases of the proposed method can be caused by different
intermediate steps. The first two columns show the output from HALNet, a
heatmap and its maximum location with corresponding confidence. Note that
the root stabilization step improved the location in the last row (from green
to red) but did not succeed. The third, fourth and fifth column shows 2D
predictions, 3D predictions, and the tracked kinematic skeleton, respectively.

5.7 conclusion

This chapter of the thesis presented a method for hand pose estimation
in challenging first-person viewpoints with large occlusions and scene
clutter. The proposed method uses two CNNs to localize and estimate,
in real time, the 3D joint locations of the hand. A pose tracking energy
further refines the pose by estimating the joint angles of a kinematic
skeleton for temporal smoothness. To train the CNNs, the SynthHands
dataset was used (Section 4.1) which leverages a merged reality approach
to capture natural hand interactions, hand shape, size and color vari-
ations, object occlusions, and background variations from egocentric
viewpoints. Furthermore, a new benchmark dataset EgoDexter was in-
troduced, containing annotated real sequences of challenging cluttered
scenes as seen from egocentric viewpoints. Quantitative and qualitative
evaluation showed that the proposed approach is capable of achieving
low errors and consistent performance even under difficult occlusions,
scene clutter, and background changes.

As mentioned in the limitations, the presented approach was trained
on fully synthetic data. The next chapter explores how to use enhanced
training data which reduces the domain gap between synthetic and real
hand images to build a method for hand tracking from monocular RGB
video, removing the need for depth sensors.
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R E A L - T I M E 3 D H A N D T R A C K I N G F R O M M O N O C U L A R
R G B V I D E O

The previous chapter introduced a new approach for real-time hand track-
ing under occlusion and in cluttered scenes from an egocentric RGB-D
sensor. This chapter (published as Mueller et al., 2018) aims to remove the
need for depth sensing by the camera, solely relying on a monocular RGB
camera, e.g., a commodity webcam. The proposed tracking method com-
bines a convolutional neural network with a kinematic 3D hand model,
such that it generalizes well to unseen data, is robust to occlusions and
varying camera viewpoints, and leads to anatomically plausible as well
as temporally smooth hand motions. While the approach from Chapter 5

used purely synthetic data to train the machine learning components,
the method presented in this chapter leverages the enhanced GANerated
Hands dataset which was created using domain adaptation techniques
(Section 4.2). The GANerated Hands dataset was created by a geometrically
consistent image-to-image translation network that translates synthetic
images to “real” images, such that the so-generated images resemble the
statistical distribution of real-world hand images. It is demonstrated that
the proposed hand tracking system outperforms the current state-of-the-
art on challenging RGB-only footage and that using GANerated data
indeed improves the performance on real test sequences.

6.1 introduction

Estimating the 3D pose of the hand is a long-standing goal in computer
vision with many applications such as in virtual/augmented reality
(VR/AR) (Lee and Hollerer, 2009; Piumsomboon et al., 2013) and human–
computer interaction (Markussen et al., 2014; Sridhar et al., 2015b). While
there is a large body of existing works that consider marker-free image-
based hand tracking or pose estimation, many of them require depth
cameras (Ge et al., 2016; Qian et al., 2014; Sharp et al., 2015; Sridhar et al.,
2015a; Tagliasacchi et al., 2015; Taylor et al., 2016; Wan et al., 2017) or
multi-view setups (Ballan et al., 2012; Sridhar et al., 2013; Wang et al.,
2011). However, in many applications these setups are unfavorable since
the required hardware is less ubiquitous, more expensive, and does not
work in all scenes.

51
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Figure 6.1: This chapter presents an approach for real-time 3D hand tracking
from monocular RGB-only input. The proposed method is compatible with
unconstrained video input such as community videos from YouTube (top left,
top center), and robust to occlusions. It achieves real-time 3D hand tracking
results using an off-the-shelf RGB webcam in unconstrained setups (top right,
middle row, bottom row).

In contrast, this thesis addresses these issues and proposes a new
algorithm for real-time skeletal 3D hand tracking with a single color camera
that is robust under object occlusion and clutter. Recent developments
that consider RGB-only markerless hand tracking (Gomez-Donoso et al.,
2017; Simon et al., 2017; Zimmermann and Brox, 2017) come with clear
limitations. For example, the approach by Simon et al., 2017 achieves the
estimation of 3D joint locations within a multi-view setup; however in
the monocular setting only 2D joint locations are estimated. Similarly,
the method by Gomez-Donoso et al., 2017 is also limited to 2D. Recently,
Zimmermann and Brox, 2017 presented a 3D hand pose estimation
method based on monocular RGB data, however, they only obtain relative
3D positions and struggle with occlusions.

Inspired by recent work on hand and body tracking (Mehta et al., 2017b;
Mueller et al., 2017; Tompson et al., 2014), the proposed method combines
CNN-based 2D and 3D hand joint predictions with a kinematic fitting step
to track hands in global 3D from monocular RGB. The major issue of such
(supervised) learning-based approaches is the requirement of suitable
annotated training data. While it has been shown to be feasible to manually
annotate 2D joint locations in single-view RGB images (Johnson and
Everingham, 2010), it is impossible to accurately annotate in 3D due to the
inherent depth ambiguities. One way to overcome this issue is to leverage
existing multi-camera methods for tracking hand motion in 3D (Ballan et
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al., 2012; Gomez-Donoso et al., 2017; Sridhar et al., 2013; Wang et al., 2011).
However, the resulting annotations would lack precision due to inevitable
tracking errors. Some works render synthetic hands for which the perfect
ground truth is known (e.g., Chapter 5 or Zimmermann and Brox, 2017).
However, CNNs trained on synthetic data may not always generalize well
to real-world images. Hence, the GANerated Hands dataset, as introduced
in Section 4.2, is used as training data. The GANerated Hands dataset
was created by performing image-to-image translation between synthetic
and real images. The creation procedure fulfills two strong requirements.
First, it works on unpaired images so that a large-scale real hands dataset
can easily be collected. Second, the algorithm preserves the pose of the
hand with a geometric consistency loss such that the annotations of the
synthetic images are still valid for the translated images. Throughout
the rest of this chapter, images are denoted as “real” (in quotes), or
GANerated, to refer to synthetic images after they have been processed
by the translation network, the GeoConGAN (Section 4.2), such that they
resemble the statistical distribution of real-world images.

Finally, using annotated RGB images produced by the GeoConGAN, a
CNN that jointly regresses image-space 2D and root-relative 3D hand
joint positions is trained. While the skeletal hand model in combination
with the 2D predictions is sufficient to estimate the global translation
of the hand, the relative 3D positions resolve the inherent ambiguities
in global rotation and articulation which occur in the 2D positions. In
summary, this chapter contributes:

• The first real-time hand tracking system that tracks global 3D hand
pose from unconstrained monocular RGB-only images.

• Experiments about the influence of the domain gap between syn-
thetic and real images for 3D hand pose estimation from monocular
RGB.

6.2 overview

The main goal of this chapter is to present a real-time system for monoc-
ular RGB-only hand tracking in 3D. The overall system is outlined in
Figure 6.2. Given a live monocular RGB-only video stream, a CNN hand
joint regressor, RegNet, is used to predict 2D joint heatmaps and 3D joint
positions (Section 6.3). RegNet is trained with images from the GANerated
Hands dataset that were generated by an image-to-image translation net-
work, the GeoConGAN, that enriches synthetic hand images. These images
are better suited to train a CNN that should work on real footage, as
demonstrated in Section 6.5.1. After joint regression, a kinematic skeleton
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Figure 6.2: Overview of the proposed real-time system for monocular RGB hand
tracking in 3D.

(as introduced in Section 3.1) is fitted to both the 2D and 3D predictions
by minimizing a fitting energy (Section 6.4). The energy formulation has
several key advantages for achieving a robust 3D hand pose tracking:

1. Anatomical plausibility is enforced.

2. The absolute 3D positions are retrieved.

3. Pose ambiguities that arise in monocular RGB images are resolved.

4. Temporal stability is imposed across multiple frames.

6.3 hand joints regression

In order to regress the hand pose from a (cropped) RGB image of the hand,
a CNN that predicts 2D and 3D positions of 21 hand joints is trained,
which is in the following referred to as RegNet. The 2D joint positions
are represented as heatmaps in image space, and the 3D positions are
represented as 3D coordinates relative to the root joint normalized by the
hand size. Note that regressing both 2D and 3D joints is complementary
to each other, as the 2D heatmaps are able to represent uncertainties and
describe the position relative to the camera, whereas the 3D positions
resolve the depth ambiguities in the hand articulations.

6.3.1 Network Architecture

The RegNet, shown in Figure 6.3, is based on a residual network consisting
of 10 residual blocks that is derived from the ResNet50 architecture (He et
al., 2016), as done in Chapter 5. Additionally, a (differentiable) refinement
module based on a projection layer (ProjLayer) is incorporated to better
coalesce the 2D and 3D predictions. The idea of the ProjLayer is to perform
an orthographic projection of (preliminary) intermediate 3D predictions,
from which 2D Gaussian heatmaps are created (within the layer). These
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Figure 6.3: Architecture of RegNet. While only ResNet and conv are trainable,
errors are still back-propagated through the proposed ProjLayer. Input data is
shown in green, data generated by the network in blue, and the losses are shown
in black.

heatmaps are then leveraged in the remaining part of the network (conv)
to obtain the final 2D and 3D predictions. Figure 6.4 shows that this leads
to improved results.

6.3.2 Network Training

The training is based on a mixture of GANerated (Section 4.2) and syn-
thetic images, in conjunction with corresponding 3D ground-truth joint
positions. The training set contains approximately 440, 000 samples in
total out of which 60% are GANerated. It was empirically found that the
performance on real test data does not further improve by increasing this
percentage. RegNet is trained with relative 3D joint positions, which are
computed by normalizing the absolute 3D ground-truth joint positions
such that the middle finger metacarpophalangeal (MCP) joint is at the
origin and the distance between the wrist joint and the middle MCP joint
is 1. Details can be found in Appendix A.3.

During test time, i.e., for hand tracking, the input to RegNet is a cropped
RGB image, where the (square) bounding box is derived from the 2D
detections of the previous frame. In the first frame, the square bounding
box is located at the center of the image, with size equal to the input
image height. Also, the outputs of RegNet are filtered with the 1e filter
(Casiez et al., 2012) to obtain temporally smoother predictions.
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6.4 kinematic skeleton fitting

After obtaining the 2D joint predictions in the form of heatmaps in image
space, and the 3D joint coordinates relative to the root joint, a kinematic
skeleton model is fitted to this data. This ensures an anatomically plausi-
ble hand pose, while at the same time allowing to retrieve the absolute
hand pose, as described below. Note that we use the camera coordi-
nate system as global coordinate frame. Moreover, when processing a
sequence of images, i.e., performing hand tracking, temporal smoothness
can be imposed additionally.

6.4.1 Hand Model Adaptation

To account for bone length variability across different users, per-user skele-
ton adaptation is performed. The user-specific bone lengths are obtained
by averaging relative bone lengths of the 2D prediction over 30 frames
while the users hold their hand parallel to the camera image plane. Alter-
natively, when this short adaptation sequence is not available, e.g., for
community videos, the relative bone lengths of the 3D joint predictions
are used. Up to a single factor due to the inherent scale ambiguity in
RGB data, global 3D results can be determined which is important for
many applications and not supported by previous work (Zimmermann
and Brox, 2017). In addition, metrically accurate 3D results are obtained
when provided with the metric length of a single bone.

6.4.2 Fitting Energy

For model fitting, the goal is to minimize the energy

E(θ) = E2D(θ)+E3D(θ)+Elim(θ)+Etemp(θ) , (6.1)

where the individual energy terms are described below.

2d fitting term . The purpose of E2D is to minimize the distance
between the hand joint position projected onto the image plane and the
heatmap maxima. It is given by

E2D(θ) = ∑
j

ωj‖Π(Mj(θ)))− uj‖2
2 , (6.2)

where uj ∈ R2 denotes the heatmap maximum of the j-th joint, ωj > 0 is
a scalar confidence weight derived from the heatmap, and Π : R3 7→ R2

is the projection from 3D space to the 2D image plane, which is based on
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the camera intrinsics. Note that this 2D term is essential for retrieving
absolute 3D positions since the 3D fitting term E3D takes only root-relative
articulation into account, as described next.

3d fitting term . The purpose of the term E3D is to obtain an accu-
rate estimate of the 3D hand articulation by using the predicted relative
3D joint positions. Moreover, this term resolves depth ambiguities that
are present when using 2D joint positions only. E3D is defined as

E3D(θ) = ∑
j
‖(Mj(θ)−Mroot(θ))− zj‖2

2 . (6.3)

The variable zj ∈ R3 is the user-specific position of the j-th joint relative
to the root joint, which is computed from the output of the RegNet, xj, as

zj = zp(j) +
‖Mj(θ)−Mp(j)(θ)‖2

‖xj − xp(j)‖2
(xj − xp(j)) , (6.4)

where p(j) is the parent of joint j and zroot = 0 ∈ R3. The idea of using
user-specific positions is to avoid poor local minima caused by bone
length inconsistencies between the hand model and the 3D predictions.

joint angle constraints . The term Elim penalizes anatomically
implausible hand articulations by enforcing that joints do not bend too far.
Note that the limit constraint is not used for the global rigid translation
and rotation parameters, but only for the part of the pose parameters
θ that describe the articulation angles, further denoted as θartc ∈ R20.
Mathematically, it is defined as

Elim(θ) = ‖max(
[
0,θartc−θmax,θmin−θartc

]
)‖2

2 , (6.5)

where θmax,θmin are the upper and lower limits for joint angles and the
function max : R�×3 7→ R� computes the row-wise maximum.

temporal smoothness . The term Etemp penalizes deviations from
constant velocity in θ. It is formulated as

Etemp(θ) = ‖(∇θprev −∇θ)‖2
2 , (6.6)

where the gradients of the pose parameters θ are determined using finite
(backward) differences.

6.4.3 Optimization

In order to minimize the energy in Equation (6.1) a gradient-descent
strategy is used. Let t, r ∈ R3 be the parts of the pose parameters θ
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that express the global rigid translation and rotation, respectively, and
θartc ∈ R20 be the remaining parameters, namely the articulation angles,
as defined for the joint angle constraint. For the first frame, θ is initialized
to represent a flat hand that is centered in the image and 45cm away
from the camera plane. For the remaining frames the translation and
articulation parameters t and θartc from the previous frame are used as
initialization. While conducting experiments, it was found that fast global
hand rotations may lead to a poor optimization result corresponding
to a local minimum in the non-convex energy landscape. In order to
deal with this problem, the initialization for the global rotation matrix
rotmat(r) = R ∈ SO(3) does not rely on the previous value Rprev, but
instead it is based on the relative 3D joint predictions. Specifically, it can
be observed that in the human hand the wrist joint and its four direct
child joints of the non-thumb fingers (the respective MCP joints) are
(approximately) rigid (see Figure 6.2, Skeleton Fitting block). Thus, the
global rotation R can be found by solving the problem

min
R∈SO(3)

‖RZ̄ − Z̃‖2
F , (6.7)

where Z̄ contains (fixed) direction vectors derived from the hand model,
and Z̃ contains the corresponding direction vectors that are derived from
the current RegNet predictions. Both have the form Z =

[
yj1 ,yj2 ,yj3 ,yj4 , n

]
∈ R3×5, where the yjk = 1

‖xjk
−xroot‖ (xjk−xroot) ∈ R3 are (normalized)

vectors that point from the wrist joint to the respective non-thumb MCP
joints j1, . . . , j4, and n = yj1 × yj4 is the (approximate) normal vector of
the “palm-plane”. To obtain Z̄ we compute the yj based on the xj of the
3D model points in world space, which is done only once for a skeleton at
the beginning of the tracking when the global rotation of the model is the
identity rotation. To obtain Z̃ in each frame, the xj are set to the RegNet
predictions for computing the yj. While problem (6.7) is non-convex, it still
admits the efficient computation of a global minimum as it is an instance
of the Orthogonal Procrustes Problem (Schönemann, 1966; Ten Berge, 2006):
for UΣV T being the singular value decomposition of Z̃Z̄T ∈ R3×3, the
global optimum of (6.7) is given by R = U diag(1, 1, det(UV T))V T.

6.5 experiments

The proposed method is quantitatively and qualitatively evaluated and
compared to other state-of-the-art methods on a variety of publicly
available datasets. For that, the Percentage of Correct Keypoints (PCK)
score is used, a popular criterion to evaluate pose estimation accuracy.
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PCK defines a candidate keypoint to be correct if it falls within a circle
(2D) or sphere (3D) of given radius around the ground truth.

6.5.1 Ablation Study

Figure 6.4 shows a comparison of the accuracies when training the joint
regressor RegNet with different types of training data. Specifically, the
following versions are compared:

(1) using synthetic images only (blue n),

(2) using synthetic images plus color augmentation (orange n),

(3) using synthetic images in combination with GANerated images
(yellow n),

(4) in addition to (3) the ProjLayer is used in RegNet (purple n).
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Figure 6.4: Ablative study analyzing dif-
ferent training options using the 3D
PCK metric on the Stereo Dataset (Zhang
et al., 2016). Using GANerated images
(yellow) outperforms using only syn-
thetic images (blue). Our projection
layer (purple) to enforce 2D/3D consis-
tency further improves accuracy.

For color augmentation, gamma
correction was employed with ran-
dom γ ∈ [0.25, 2] sampled uni-
formly. While the RegNet is evalu-
ated on the entire Stereo Dataset
(Zhang et al., 2016) comprising
12 sequences, it was not trained
on any frame of the dataset for
this test. Training on purely syn-
thetic data leads to poor accuracy
(3D PCK@50mm ≈ 0.55). While
color augmentation on synthetic
images improves the results, train-
ing on GANerated images signifi-
cantly outperforms standard aug-
mentation techniques, achieving a
3D PCK@50mm ≈ 0.80. This test
validates the argument for using
GANerated images.

6.5.2 Comparison to the State of the Art

Figure 6.5a evaluates the detection accuracy of the proposed approach
on the Stereo Dataset, and compares it to existing methods (Zhang et al.,
2016; Zimmermann and Brox, 2017). The same evaluation protocol as
in Zimmermann and Brox, 2017 was used, i.e., training is performed



60 real-time 3d hand tracking from monocular rgb video

20 25 30 35 40 45 50

Error Thresholds (mm)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3D
 P

C
K

Stereo Dataset (2 Seq.)

PSO (AUC=0.709)
ICPPSO (AUC=0.748)
CHPR (AUC=0.839)
Z&B (AUC=0.948)
Proposed wo/St. (AUC=0.825)
Proposed w/St. (AUC=0.965)

(a) 3D PCK on the Stereo Dataset (Zhang et
al., 2016). 10 sequences are used for train-
ing and 2 for testing, as in previous works
(Zhang et al., 2016; Zimmermann and Brox,
2017). The proposed method (light blue)
achieves the best results.

0 5 10 15 20 25 30

Error Thresholds (pixels)

0

0.2

0.4

0.6

0.8

1

2D
 P

C
K

Dexter+Object | EgoDexter

D+O: Z&B (AUC=0.49)
D+O: Proposed (AUC=0.64)
ED: Z&B (AUC=0.44)
ED: Proposed (AUC=0.54)

(b) 2D PCK on the Dexter+Object (D+O)
(Sridhar et al., 2016) and EgoDexter (ED)
(Chapter 5) datasets. The proposed method
(saturated blue/orange) outperforms Zim-
mermann and Brox, 2017 (Z & B) on both
datasets.

Figure 6.5: Quantitative comparison with state-of-the-art methods on publicly
available datasets.

on 10 sequences and testing on the other 2. Furthermore, Zimmermann
and Brox, 2017 align their 3D prediction to the ground-truth wrist which
is also done for the results of the proposed approach for fairness. The
proposed method (light blue n) outperforms all existing methods. Addi-
tionally, even without training on any sequence of the Stereo Dataset the
proposed method still outperforms some of the existing works (green line
n in Figure 6.5a). This demonstrates the generalization of the presented
approach.

Figure 6.5b shows the 2D PCK, in pixels, on the Dexter+Object (Sridhar
et al., 2016) and EgoDexter (Chapter 5) datasets. The proposed method
(saturated blue n/orange n) significantly outperforms Zimmermann and
Brox, 2017 (pale blue n/orange n), which fails under difficult occlusions.
Note that the 3D PCK cannot be reported since the method by Zimmer-
mann and Brox, 2017 only outputs root-relative 3D, and these datasets
do not have root joint annotations.

Figure 6.6 presents qualitative results of the proposed method and the
method by Zimmermann and Brox, 2017 on three datasets: the Stereo
Dataset (Zhang et al., 2016), Dexter+Object (Sridhar et al., 2016), and
EgoDexter (Chapter 5). The proposed method is able to provide robust
tracking of the hand even under severe occlusions, and significantly
improves over Zimmermann and Brox, 2017 in these cases. While the
proposed approach already outperformed Zimmermann and Brox, 2017

in the quantitative evaluation (see Figure 6.5b), it should be emphasized
that this is not the full picture, since the Dexter+Object and EgoDexter
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Figure 6.6: Qualitative comparison to Zimmermann and Brox, 2017 (Z & B) on
three different datasets. The proposed method is more robust in cluttered scenes
and correctly retrieves the hand articulation when fingers are hidden behind
objects.

datasets only provide annotations for visible finger tips due to the manual
annotation process. Thus, the error of occluded joints is not at all reflected
in the quantitative analysis. Since the proposed method is explicitly
trained to deal with occlusion, in contrast to Zimmermann and Brox,
2017, the qualitative analysis in columns 3–6 of Figure 6.6 highlights the
superiority of the presented method in such scenarios.

6.5.3 Comparison to RGB-D Methods

The proposed method for RGB-only 3D hand reconstruction is compared
to the RGB-D method by Sridhar et al., 2016. The 3D tracking of hands in
purely RGB images is an extremely challenging problem due to inherent
depth ambiguities of monocular RGB images. While the proposed method
advances the state-of-the-art of RGB-only hand tracking methods, there
is still a gap between RGB-only and RGB-D methods (e.g., Chapter 5 or
Sharp et al., 2015; Sridhar et al., 2015a). A quantitative analysis of this
accuracy gap is shown in Figure 6.7, where the results of the proposed
method (dark blue n) are compared with the RGB-D method from Sridhar
et al., 2016 (orange n). The mean error for the proposed RGB approach is
≈5cm, whereas the RGB-D method of Sridhar et al., 2016 achieves ≈2cm
on their dataset Dexter+Object.
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Figure 6.7: 3D PCK on Dexter+Object.
Note that the approach by Sridhar et al.,
2016 requires RGB-D input, while the
proposed method uses RGB only.

In order to better understand
the source of errors, an additional
experiment is performed where
the global z-position of the RGB-
only results is translated to best
match the depth of the ground
truth. In Figure 6.7 these depth-
normalized results (light blue n)
are compared with the original re-
sults (dark blue n). It can be seen
that a significant portion of the gap
between methods based on RGB
and RGB-D is due to inaccuracies
in the estimation of the hand root
position. Reasons for an inaccurate
hand root position include a skeleton that does not perfectly fit the user’s
hand (in terms of bone lengths), as well as inaccuracies in the 2D predic-
tions.

6.5.4 Qualitative Evaluation

Qualitative results of the method on RGB videos from different sources
are shown in Figure 6.1. It is demonstrated that the proposed method
is compatible with community or vintage RGB video. In particular, 3D
hand tracking in YouTube videos is presented, which demonstrates the
generalization of the method. Other sequences were tracked live with a
regular desktop webcam in an office environment. The proposed method
accurately recovers the full 3D articulated pose of the hand.

Figure 6.8 and Figure 6.9 show qualitative evaluation of each of the
intermediate stages along the proposed tracking solution as well as the
final result. In particular, Figure 6.8 contains results on the EgoDexter
dataset (Chapter 5) where a subject grabs different objects in an office
environment, and Figure 6.9 shows results on community videos down-
loaded from YouTube. In both figures, various visualizations are provided:
heatmap maxima of the 2D joint detections (first row); root-relative 3D
joint detections (second row); global 3D tracked hand projected into
camera plane (third row); and global 3D tracked hand visualized in a
virtual scenario with the original camera frustum (fourth and fifth rows).
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Figure 6.8: Qualitative results of different stages of the method on the Desk se-
quence from EgoDexter (Chapter 5). RegNet output (rows 1,2) and final tracking.
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Figure 6.9: Qualitative results of different stages of the method on community
videos from YouTube. RegNet output (rows 1,2) and final tracking.
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(a) The hand leaves the field
of view of the camera.

(b) The background color is
similar to the skin color.

(c) Two hands are interact-
ing.

Figure 6.10: Failure cases of the proposed method.

6.6 limitations and discussion

Figure 6.10 shows failure cases of the proposed method. When the hand
is partially cut off by the image boundary due to leaving the field of view
of the camera, there should ideally not be any sufficiently confident 2D
predictions for the invisible keypoints. However, when these out-of-view
keypoints are incorrectly predicted on the image plane, the estimated
hand skeleton is pushed inside the field of view. Another difficult scenario
for the presented method is when the background has similar appearance
as the hand, as RegNet struggles to obtain good predictions and thus
tracking becomes unstable. Note that this problem is especially severe
when using monocular RGB input since there is no depth or multi-
view information available to help the disambiguation between hand and
background. This can be addressed by using an explicit segmenter, similar
to Zimmermann and Brox, 2017. Moreover, when multiple hands are close
in the input image, detections may be unreliable. While the proposed
approach can handle sufficiently separate hands—due to the bounding
box tracker—tracking of interacting hands, or hands of multiple persons,
is an interesting direction for follow-up work.

The 3D tracking of hands in purely 2D images is an extremely chal-
lenging problem. While the proposed real-time method for 3D hand
tracking outperforms state-of-the-art RGB-only methods, there is still an
accuracy gap between the achieved results and existing RGB-D methods,
as discussed in Section 6.5.3. Nevertheless, the proposed method is an
important step towards democratizing RGB-only 3D hand tracking.

6.7 conclusion

Most existing works either consider 2D hand tracking from monocular
RGB, or they use additional inputs, such as depth images or multi-
view RGB, to track the hand motion in 3D. While the recent method by
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Zimmermann and Brox, 2017 tackles monocular 3D hand tracking from
RGB images, the proposed approach addresses the same problem but
goes one step ahead with regards to several dimensions: the proposed
method obtains the absolute 3D hand pose by kinematic model fitting,
is more robust to occlusions, and generalizes better due to enrichment
of synthetic data such that it resembles the distribution of real hand
images. The experimental evaluation demonstrates these benefits as the
proposed method significantly outperforms Zimmermann and Brox, 2017,
particularly in difficult occlusion scenarios.

Despite impressive results in many cases, the method proposed in this
chapter only works for a single hand and fails when two hands overlap in
the image as shown in the limitations (Figure 6.10c). Chapter 7 specifically
tackles the challenging problem of reconstructing two strongly interacting
hands in real time.





7
R E A L - T I M E P O S E A N D S H A P E R E C O N S T R U C T I O N O F
T W O I N T E R A C T I N G H A N D S

Chapter 5 and Chapter 6 have tackled different aspects of challenging
scenes for 3D hand reconstruction, namely strong occlusion and cluttered
environments, and the inherent ambiguity of monocular RGB input data.
Whereas the previously presented methods only work for a single hand,
this chapter focuses on a novel method for two strongly interacting hands,
even enabling simultaneous reconstruction of pose and shape in real time
(published as Mueller et al., 2019).

The proposed approach is the first two-hand tracking solution that
combines the following favorable properties: it is marker-less, uses a
single consumer-level depth camera, runs in real time, handles inter- and
intra-hand collisions, and automatically adjusts to the user’s hand shape.
In order to achieve this, a recent parametric hand pose and shape model
(Romero et al., 2017) and dense correspondence predictions based on a
deep neural network are embedded into a suitable energy minimization
framework. The correspondence prediction network is trained on the
DenseHands dataset (Section 4.4), a two-hand dataset which was synthe-
sized based on physical simulations and includes both hand pose and
shape annotations while at the same time avoiding inter-hand penetra-
tions. To achieve real-time rates, the model fitting is phrased in terms
of a nonlinear least-squares problem so that the energy can be opti-
mized based on a highly efficient GPU-based Gauss-Newton optimizer.
State-of-the-art results are shown in scenes that exceed the complexity
level demonstrated by previous work, including tight two-hand grasps,
significant inter-hand occlusions, and gesture interaction.

7.1 introduction

The marker-less estimation of hand poses is a challenging problem that
has received a lot of attention in the vision and graphics communi-
ties. The relevance of the problem is owed to the fact that hand pose
recognition plays an important role in many application areas such as
human-computer interaction (Kim et al., 2012), augmented and virtual
reality (AR/VR) (Höll et al., 2018), sign language recognition (Koller
et al., 2016), as well as body language recognition relevant for psychology.
Depending on the particular application, additional requirements are

67
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Figure 7.1: The proposed method estimates the pose and shape of two interacting
hands in real time from a single depth camera. The picture on the left depicts
an AR setup with a shoulder-mounted depth camera. On the right, the depth
data and the estimated 3D hand pose and shape from four different views are
shown.

frequently imposed on the method, such as performing hand tracking in
real time, or dynamically adapting the tracking to person-specific hand
shapes for increased accuracy. Ideally, reconstruction should be possible
with a simple hardware setup and therefore methods with a single color
or depth camera are widely researched. Existing marker-less methods
for hand pose estimation typically rely on either RGB (Cai et al., 2018;
Mueller et al., 2018; Zimmermann and Brox, 2017), depth images (Sridhar
et al., 2015a; Supančič et al., 2018; Taylor et al., 2017; Yuan et al., 2018),
or a combination of both (Oikonomidis et al., 2011a; Rogez et al., 2014).
The major part of existing methods considers the problem of processing
a single hand only (e.g. Oberweger et al., 2015; Qian et al., 2014; Ye and
Kim, 2018). Some of them, including the method introduced in Chapter 5,
are even able to handle object interactions (Sridhar et al., 2016; Tzionas
et al., 2016), which is especially challenging due to potential occlusions.

As humans naturally use both their hands during daily routine tasks,
many applications require to track both hands simultaneously (see Fig-
ure 7.1), rather than tracking a single hand in isolation. While there are a
few existing works that consider the problem of tracking two hands at the
same time, they are limited in at least one of the following points: (i) they
only work for rather simple interaction scenarios (e.g., no tight two-hand
grasps, significant inter-hand occlusions, or gesture interaction), (ii) they
are computationally expensive and not real-time capable, (iii) they do
not handle collisions between the hands, (iv) they use a person-specific
hand model that does not automatically adapt to unseen hand shapes,
or (v) they heavily rely on custom-built dedicated hardware. In contrast
to existing methods, the proposed approach can handle two hands in
interaction while not having any of the limitations (i)-(v), see Table 7.1.
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Table 7.1: The proposed method is the first to combine several desirable proper-
ties.

[Oikon. 2
0
1
2
]

[Tzionas 2
0
1
6
]

[Tkach 2
0
1
7
]

[Taylor 2
0
1
7
]

Proposed

Interacting Hands 3 3 7 3 3

Shape Estimation 7 7 3 7 3

Real Time 7 7 3 3 3

Commodity Sensor 3 3 3 7 3

Collision Avoidance 3 3 3 7 3

This thesis presents for the first time a marker-less method that can
track two hands with complex interactions in real time with a single
depth camera, while at the same time being able to estimate the person’s
hand shape. From a technical point of view, this is achieved thanks to a
novel learned dense surface correspondence predictor that is combined
with a recent parametric hand model (Romero et al., 2017). These two
components are combined in an energy minimization framework to find
the pose and shape parameters of both hands in a given depth image.
Inspired by the recent success of deep learning approaches, especially
for image-based prediction tasks (Alp Güler et al., 2017, 2018; Badri-
narayanan et al., 2017; Zhang et al., 2017b), a correspondence regressor
based on deep neural networks is employed. Compared to ICP-like local
optimization approaches, using such a global correspondence predictor
is advantageous, as it is less prone to the failures caused by wrong initial-
ization and can easily recover even from severe tracking errors. Since it is
not feasible to obtain reliable dense correspondence annotations in real
data, synthetic data has to be used. Here, it is crucial to obtain natural
interactions between the hands, which implies that simply rendering a
model of the left and of the right hand (in different poses) into the same
view is not sufficient. Thus, the synthetic DenseHands dataset, as intro-
duced in Section 4.4, is used. The creation process of DenseHands makes
use of an extension of the motion capture-driven physical simulation
(Verschoor et al., 2018) that leads to faithful, collision-free, and physically
plausible simulated hand-hand interactions.

The main contributions of the presented approach are summarized as
follows:
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Figure 7.2: Overview of the proposed two-hand pose and shape estimation
pipeline. Given only a depth image as input, the dense correspondence regres-
sion network (CoRN) computes a left/right segmentation and a vertex-to-pixel
map. To obtain the hand shape estimation and pose tracking this data is used in
an energy minimization framework, where a parametric hand pose and shape
model is fit so that it best explains the input data.

• The first method that can track two interacting hands in real time
with a single depth camera, while at the same time being able to
estimate the hand shape and taking collisions into account.

• Contrary to existing methods, the proposed approach is more ro-
bust and reliable in involved hand-hand interaction settings.

7.2 overview

Figure 7.2 shows an overview of the pipeline for performing real-time
hand pose and shape reconstruction of two interacting hands from a sin-
gle depth sensor. The first step is training a neural network that regresses
dense correspondences between the hand model and a depth image
that depicts two (possibly interacting) hands. In order to disambiguate
between pixels that belong to the left hand, and pixels that belong to
the right hand, the dense correspondence map also encodes the seg-
mentation of the left and right hand. To ensure realistic training data of
hand interactions, the DenseHands dataset (Section 4.4) is used, which
makes use of motion capture-driven physical simulation to generate
(synthetic) depth images along with ground-truth correspondence maps.
The DenseHands data is additionally augmented with real depth data
that is used for training the segmentation channel of the correspondence
map. The so-obtained correspondence maps are then used to initialize
an energy minimization framework, where a parametric hand model, as
described in Section 3.3, is fitted to the given depth data. During fitting,
the proposed method uses statistical pose and shape regularizers to avoid
implausible configurations, a temporal smoothness regularizer, as well
as a collision regularizer in order to avoid interpenetration between both
hands and within each hand.
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In order to achieve real-time performance, the energy minimization
step is phrased in terms of a nonlinear least-squares formulation, and
makes use of a highly efficient data-parallel GPU implementation based
on a Gauss-Newton optimizer.

The remainder of this section describes the generalization of the single
hand MANO model (see Section 3.3) to two hands. Subsequently, a
detailed explanation of the dense correspondence regression is provided
in Section 7.3, followed by a description of the pose and shape estimation
in Section 7.4.

7.2.1 Two Hand Model

The MANO model (Romero et al., 2017) is used as 3D hand representation.
It is a low-dimensional parametric hand surface model that captures hand
shape variation as well as hand pose variation.Details are provided in
Section 3.3. Let V be the 3D mesh vertices of a single hand model where
NV := |V| = 778. Furthermore, let v : RNS ×RNP → R3NV be the function
that computes the 3D positions of all of the mesh’s NV vertices, given
a shape parameter vector β ∈ RNS and pose parameter vector θ ∈ RNP ,
with NS = 10 and NP = 51. The pose parameter vector contains both the
global rigid body pose, as well as the individual articulation parameters.
The notation vi(β,θ) ∈ R3 denotes the 3D position of the i-th vertex.

Mean Shape and Pose

+3σ

+3σ

-3σ

-3σ

Shape

Shape

Pose Pose

front back

Figure 7.3: Illustration of hand
model mesh with the collision
proxies.

For tracking two hands that can move
independently, independent hand mod-
els of the left and right hand are
used, which are denoted by Vleft and
Vright with vertices vleft(βleft,θleft) and
vright(βright,θright), respectively. For nota-
tional convenience, the parameters of the
left and right hand are stacked so that
β = (βleft,βright) and θ = (θleft,θright),
and V with Nv := |V| = 2·778 denotes
the combined vertices of the left and the
right hand.

To resolve interpenetrations at high
computational efficiency, collision proxies
are added to the hand model. The volu-
metric extent of the hand is approximated
with a set of spheres that are modeled with 3D Gaussians as employed by
previous work (Sridhar et al., 2015a) and explained in Section 3.2. Using
this formulation, interpenetrations can then be avoided by penalizing
the overlap of the Gaussians during pose optimization. Note that the
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overlap between Gaussians is differentiable and can be computed in
closed form—in contrast to naïve binary collision checking. The Gaus-
sians are combined with the existing MANO model by rigging their
positions to the hand joints and coupling their standard deviations to
pairs of manually selected vertices. Doing this ensures that the position
and size of the Gaussians vary in accordance with the pose and shape
parameters β and θ. For each hand 35 3D Gaussians are added, which
leads to a total number of NC = 70 for the combined two-hands model.
A visualization of the isosurface at 1 standard deviation of the Gaussians
is shown in Figure 7.3. Next, the correspondence regressor is described
that is eventually coupled with the two-hands model in order to perform
pose and shape reconstruction.

7.3 dense correspondence regression

Let I be the input depth image of pixel-dimension h by w defined over
the image domain Ω. The goal is to learn a vertex-to-pixel correspondence
map c : V → Ω̄ that assigns to each vertex of the model V a corresponding
pixel of I in the image domain Ω. In order to allow the possibility to not
assign an image pixel to a vertex (i.e. a vertex currently not visible), the
set Ω is extended to also include ∅, which is denoted by Ω̄.

7.3.1 Obtaining Vertex-to-Pixel Mappings

To obtain the vertex-to-pixel correspondence map c, a dense correspon-
dence image N : Ω→ [0, 1]4, as defined in Section 4.4, is used. For each
image pixel, it contains a 4-channel feature value, the dense correspon-
dence encoding, that uniquely encodes the 3D surface point of the hand
model, which is visible at this pixel. To obtain a vertex-to-pixel correspon-
dence map c for a given depth image I , the image pixels are first mapped
to the dense correspondence encoding space using N (a function over the
image domain). Subsequently, the per-pixel values obtained through N
are compared with the fixed dense correspondence encoding η defined
over the hand model surface (see Section 4.4.1). The vertex-to-pixel maps
are constructed by a thresholded nearest-neighbor strategy for all vertices
i ∈ V as follows

ĉ(i) = argmin
j∈Ω

‖N (j)− η(i)‖2 , and (7.1)

c(i) =

ĉ(i) if ‖N (ĉ(i))− η(i)‖2 < tc

∅ otherwise
. (7.2)
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If the closest predicted value for some vertex i is larger than the empiri-
cally chosen threshold tc=0.04, this vertex is likely to be invisible in the
input depth image.

7.3.2 Training Data

Since it is not possible to annotate dense correspondences on real data,
the synthetically generated DenseHands dataset is used. This dataset
contains realistic two-hand interactions that were generated by a live
motion-capture-driven physical simulation framework (see Section 4.4).
Nevertheless, when only trained with synthetic data, neural networks
tend to overfit and hence may not generalize well to real test data. To
overcome this, real depth camera footage of hands was integrated into
the so far synthetically generated training set. Since it is infeasible to
obtain dense correspondence annotations on real data, the annotation on
real data is restricted to the left/right hand segmentation task. Because
the proposed approach only uses the depth input channel as input
data, the color channel can be instrumented for automatic segmentation
annotation. As body paint (Soliman et al., 2018; Tompson et al., 2014) has
less influence on the observed hand shape, in contrast to colored gloves
(Taylor et al., 2017), body paint is used to obtain reliable annotations
by color segmentation in the RGB image provided by the depth camera.
Please refer to Section 4.3 for more details on automatic color-based
segmentation annotation in depth images. In total, 3 users (1 female, 2

male) with varying hand shapes (width: 8–10cm, length: 17–20.5cm) were
captured. Approximately 3, 000 images were recorded per subject and
viewpoint (shoulder-mounted camera and frontal camera), resulting in a
total number of 19, 926 images.

7.3.3 Neural Network Regressor

Based on the mixed real and synthetic training data described in Sec-
tion 7.3.2, a neural network is trained to learn the dense correspondence
image mapping N , as depicted in Figure 7.4. Inspired by recent architec-
tures used for per-pixel predictions (Newell et al., 2016; Ronneberger et
al., 2015), the proposed network comprises two stacked encoder-decoder
processing blocks. The first block is trained to learn the segmentation
task, i.e. it outputs per-class probability maps in the original input res-
olution for the three possible classes {left, right, non-hand}. These class
probability maps are concatenated with the input depth image I and fed
into the second encoder-decoder to regress the 3-channel per-pixel hand
surface correspondence information. The final mapping N : Ω→ [0, 1]4
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Figure 7.4: The proposed correspondence regression network (CoRN) consists
of two stacked encoder-decoder networks. The output sizes of the layer blocks
are specified as height × width × number of feature channels. In addition, the
colors of the layer blocks indicate which operations are performed (best viewed
in color).

is then obtained by concatenating the correspondence output with the
label of the most likely class for each pixel. Note that the class labels are
scaled to also match the range [0, 1] by setting left = 0, right = 0.5, and
non-hand = 1. Both encoder-decoder subnetworks share the same archi-
tecture. The resolution is downsampled using convolutions with stride
2 and upsampled with the symmetric operation, deconvolutions with
stride 2. Note that every convolution and deconvolution is followed by
batch normalization and rectified linear unit (ReLU) layers. In addition,
skip connections are used to preserve spatially localized information
and enhance gradient backpropagation. Since the second subnetwork
needs to learn a harder task, the number of feature maps are doubled
in all layers. The segmentation loss is formulated as the softmax cross
entropy, a standard classification loss. For the correspondence loss, the
squared Euclidean distance is used as is common in regression tasks.
The complete network is trained end-to-end, with mixed data batches
containing both synthetic and real samples in one training iteration. For
the latter, only the segmentation loss is active. For more details on the
training procedure, please refer to Appendix A.4.

7.4 pose and shape estimation

The pose and shape of the hands present in image I are estimated by
fitting the hand surface model (see Section 7.2.1) to the depth image
data. In the first step, the foreground point-cloud {dj ∈ R3}NI

j=1 in the
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depth image I is extracted, along with the respective point-cloud nor-
mals {nj ∈ R3}NI

j=1 obtained by Sobel filtering. Based on the assumption
that the hands and arms are the objects closest to the camera, the fore-
ground is extracted using a simple depth-based thresholding strategy,
where NI denotes the total number of foreground pixels (of both hands
together). Subsequently, this point-cloud data is used in conjunction with
the learned vertex-to-pixel correspondence map c within an optimiza-
tion framework. By minimizing a suitable nonlinear least-squares energy
function, which will be defined next, the hand model parameters that
best explain the point-cloud data are determined.

The total energy for both the left and the right hand is defined as

Etotal(β,θ) = Edata(β,θ) + Ereg(β,θ) , (7.3)

where β are the shape parameters and θ are the hand pose parameters,
as described in Section 7.2.1. The data term Edata measures for a given
parameter tuple (β,θ) how well the hand model explains the depth
image I , and the term Ereg is a regularizer that accounts for tempo-
ral smoothness, plausible hand shapes and poses, as well as avoiding
interpenetrations within and between the hands.

7.4.1 Data Term

The data term is based on a combination of a point-to-point and a point-
to-plane term as

Edata(β,θ) = ωpointEpoint(β,θ) + ωplaneEplane(β,θ) , (7.4)

where ω� is used to denote the relative weights of the terms.

point-to-point. Let γi be the visibility indicator for the i-th vertex,
which is defined to be 1 if c(i) 6= ∅, and 0 otherwise. The point-to-point
energy measures the distances between all visible model vertices vi(β,θ)
and the corresponding 3D point at pixel c(i), denoted as dc(i), and is
defined as

Epoint(β,θ) =
NV

∑
i=1

γi||vi(β,θ)− dc(i)||22 . (7.5)

point-to-plane . The point-to-plane energy is used to penalize the
deviation from the model vertices vi(β,θ) and the point-cloud surface
tangent, and is defined as

Eplane(β,θ) =
NV

∑
i=1

γi 〈vi(β,θ)− dc(i), nc(i)〉2 , (7.6)
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where n� denotes the input normal at a specific pixel obtained by Sobel
filtering.

7.4.2 Regularizer

The regularizer Ereg comprises statistical pose and shape regularization
terms, a temporal smoothness term, as well as a collision term. It is
defined as

Ereg(β,θ) =ωshapeEshape(β) + ωposeEpose(θ) (7.7)

ωtempEtemp(β,θ) + ωcollEcoll(β,θ) . (7.8)

statistical regularizers . The MANO model is parameterized in
terms of a low-dimensional linear subspace obtained via PCA. Hence, in
order to impose a plausible pose and shape at each captured frame, the
Tikhonov regularizers are employed as

Eshape(β) = ||β||22 and Epose(θ) = ||θ||22 . (7.9)

Note that Epose is only employed for the part of θ that contains the pose
PCA coefficients, not for the global rigid transform.

temporal regularizer . In order to achieve temporal smoothness,
a zero velocity prior is used on the shape parameters β and the pose
parameters θ, i.e.

Etemp(β,θ) = ||β(t) − β(t−1)||22 + ||θ(t) − θ(t−1)||22 . (7.10)

collision regularizer . In order to avoid interpenetration within
individual hands, as well as interpenetrations between the left and the
right hand, a collision energy term is added. As described in Section 7.2.1,
spherical collision proxies are placed inside each hand mesh, and then
overlaps between these collision proxies are penalized. Mathematically,
this is phrased based on the overlap of (isotropic) Gaussians (Sridhar
et al., 2015a), which results in soft collision proxies defined as smooth
occupancy functions. The energy reads

Ecoll(β,θ) =
NC

∑
p=1

NC

∑
q=p+1

∫
R3

Gp(x;β,θ) · Gq(x;β,θ) dx . (7.11)

Here, Gp, Gq denote the Gaussian collision proxies whose mean µ de-
pends on the pose and shape parameters β,θ, whereas the standard
deviation σ only depends on the shape β. Please refer to Section 3.2 for
more details about the volumetric Gaussian hand model, including the
closed-form expression for Ecoll.
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7.4.3 Optimization

The energy Etotal is phrased in terms of a nonlinear least-squares formu-
lation, so that it is amenable to be optimized based on the Gauss-Newton
algorithm. All derivatives of the residuals can be computed analytically,
so that all entries of the Jacobian can be computed efficiently on the
GPU with high accuracy. Please note that the derivative ∂Ecoll(β,θ)

∂β is not
used in the optimization since this encourages shrinking of the hand
models when they are interacting. Instead, the shape β is optimized
using all other energy terms and the Gaussian parameters are updated
according to β in every optimizer iteration. More details on the GPU
implementation can be found in Appendix B.

Note that although in principle it would be sufficient to optimize for
the shape parameter once per actor and then keep it fixed throughout
the sequence, the shape optimization is performed in each frame of
the sequence. This has the advantage that a poorly chosen frame for
estimating the shape parameter does not have a negative impact on the
tracking of subsequent frames. Empirical findings indicate that the hand
shape is robust and does not significantly change throughout a given
sequence.

7.5 evaluation

In this section the proposed two-hand tracking approach is thoroughly
evaluated. Section 7.5.1 includes additional implementation details. Sub-
sequently, in Section 7.5.2, an ablation study is presented, followed by a
comparison to state-of-the-art tracking methods in Section 7.5.3. Even-
tually, in Section 7.5.4, additional results are provided, including an
experiment that demonstrates the ability of the method to adapt to
user-specific hand shapes.

7.5.1 Implementation

The implementation runs on two GPUs of type NVIDIA GTX 1080 Ti.
One GPU runs the correspondence regression network CoRN, as well
as the per-vertex correspondence matching for frame t + 1, while the
other GPU runs the model optimization for frame t. Overall, 30 fps
are achieved using an implementation based on C++, CUDA, and the
Tensorflow library. A depth camera Intel RealSense SR300 is used for the
real-time results and evaluation. Section 7.5.3 also demonstrates results
when using a publicly available dataset that was captured with a different
sensor.
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(a) (b)

Figure 7.5: Results of the ablation study. (a) shows different configurations
regarding the correspondence regressor (CoRN). (b) shows configurations re-
garding the optimizer.

Unless stated otherwise, CoRN training always uses synthetic and
real images (cf. Section 7.3.2) rendered and recorded from a frontal view-
point. It should be emphasized that it is reasonable to use view-specific
correspondence regressors as for a given application it is usually known
from which view-point the hands are to be tracked.

7.5.2 Ablation Study

A detailed ablation study was conducted, where the effects of the indi-
vidual components of the proposed approach are analyzed. For these
evaluations the dataset provided by Tzionas et al., 2016 is used, which
comes with annotations of the joint positions on the depth images. Fig-
ure 7.5 shows quantitative results of the analysis for a range of different
configurations. To this end, the percentage of correct keypoints (PCK) is
used as measure, where the horizontal axis shows the error, and the
vertical axis indicates the percentage of points that fall within this error.
To compute the PCK, the same set of keypoints as in Tzionas et al., 2016

is considered. Notice that despite using Tzionas et al.’s dataset, Figure 7.5
does not show their results because they do not provide 3D PCK values.
Qualitative results of the ablation study are shown in Figure 7.6.

correspondence regression network . In Figure 7.5a four set-
tings of different configurations for training the correspondence regressor
(CoRN) are presented:

(1) The proposed CoRN network as explained in Section 7.3 (blue n,
“Proposed”).
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Proposed

w/o Collision w/o Shape Reg.w/o Pose Reg.

w/o Real Data (Left/Right Segmentation)

Figure 7.6: Qualitative examples from the ablation study.

(2) The CoRN network but trained based on data from two viewpoints,
egocentric as well as frontal (orange n, “Mixed Viewpoint Data”).

(3) The CoRN network that is trained only with synthetic data, i.e.,
without using any real data as described in Section 7.3.2 in order
to train the segmentation sub-network (yellow n, “Without Real
Data”).

(4) Instead of using the proposed geodesic HSV embedding as dense
correspondence encoding (cf. Section 4.4.1), the naïve encoding by
mapping the original mesh onto the RGB cube is used (purple n,
“Naïve Coloring”).

It can be seen that the proposed training setting outperforms all other
settings.

pose and shape estimation. In Figure 7.5b different optimizer
configurations are shown. Five versions of the energy are evaluated:

(1) The complete energy Etotal that includes all terms (blue n, “Pro-
posed”).

(2) The energy without the collision term Ecoll (orange n, “w/o Colli-
sion”).

(3) The energy without the temporal smoothness term Etemp (yellow n,
“w/o Smoothness”).

(4) The energy without the pose regularizer Epose (purple n, “w/o
Pose Reg”).
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(5) The energy without the pose regularizer Eshape (green n, “w/o
Shape Reg”).

In addition, to demonstrate the importance of CoRN, comparisons to
two configurations using closest point correspondences instead are per-
formed:

(6) Finding the vertex correspondence as the closest input point that
was classified with the same handedness (light blue n, “Closest
(with Seg)”).

(7) Finding the vertex correspondence as the closest input point in the
whole point cloud (dark red n, “Closest (w/o Seg)”).

For these two configurations, the hand models were manually initialized
as close as possible in the first frame to enable a fair comparison. Note that
this is not necessary with CoRN which provides global correspondences
across the full frame.

It can be observed that the complete energy performs best, compared to
leaving individual terms out. Moreover, removing the pose regularizer or
the shape regularizer worsens the outcome significantly more compared
to dropping the collision or the smoothness terms when looking at the
PCK. Note that the smoothness term removes temporal jitter that is
only marginally reflected by the numbers. Similarly, while removing the
collision term does not affect the PCK significantly, it severely worsens
the results perceptually. Using naïve closest points instead of predicted
CoRN correspondences results in significantly higher errors, this holds for
both versions, with and without segmentation information. Additionally,
Figure 7.6 shows qualitative examples from the ablation study that further
validate that each term of the complete energy formulation is essential to
obtain high quality tracking of hand-hand interaction.

independence of initialization. Figure 7.7 shows that the pro-
posed hand tracker is able to recover from severe errors that occur when
the hand motion is extremely fast, so that the depth image becomes
blurry. In this scenario, as soon as the hand moves with a normal speed
again, the tracker is able to recover and provide an accurate tracking.
Note that this is in contrast to local optimization approaches (e.g., based
on an ICP-like procedure for pose and shape fitting) that cannot recover
from bad results due to severe non-convexity of the energy landscape.

7.5.3 Comparison to the State of the Art

Next, the proposed method is compared to state-of-the-art methods.
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Figure 7.7: The proposed method may fail, e.g., when the depth image is severely
blurred (left). However, due to the per-frame CoRN predictions, it instantly
recovers when the image quality improves again.

comparison to Tzionas et al . , 2016 . Table 7.2 presents results
of the quantitative comparison to the work of Tzionas et al., 2016. The
evaluation is based on their two-hand dataset that comes with joint
annotations. As shown, the relative 2D pixel error is very small in both
methods. While it is slightly higher with the proposed approach, it
has to be emphasized that it achieves a 150× speed-up and does not
require a user-specific hand model. Furthermore, Figure 7.8 qualitatively
shows that the precision error difference does not result in any noticeable
visual quality gap. Moreover, it should be pointed out that the finger tip
detection method of Tzionas et al., 2016 is ad-hoc trained for their specific
camera, whereas the proposed correspondence regressor has never seen
data from the depth sensor used in this comparison.

Table 7.2: The proposed method is compared to the method by Tzionas et al.,
2016 on their provided dataset. The table shows the average and standard
deviation of the 2D pixel error (relative to the diagonal image dimension), as
well as the per-frame runtime. Note that the pixel errors of both methods are
very small, and that the proposed method is 150× faster. Moreover, the proposed
approach automatically adjusts to the user-specific hand shape, whereas Tzionas
et al. require a 3D scanned hand model.

2D Error Runtime Shape Estimation

Proposed 1.35±0.28 % 33ms 3

Tzionas et al. 0.63±0.12 % 4960ms 7

comparison to LeapMotion, 2016 . While the commercial solu-
tion Leap Motion successfully tracks two hands when they are spatially
separated by a significant offset, it struggles and fails for complex hand-
hand interactions and does not recover well from errors (see Figure 7.9).
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Figure 7.8: Qualitative comparison with Tzionas et al., 2016. The proposed
method achieves results with comparable visual quality while running multiple
orders of magnitude faster.
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Figure 7.9: Qualitative comparison with LeapMotion, 2016. LeapMotion (top)
fails when the hands are interacting. Note that it does not recover from the error,
namely the flipped hand model, when the hands move apart again (top left). In
contrast, the proposed method (bottom) successfully tracks the interaction.
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Figure 7.10: Qualitative comparison to Taylor et al., 2017. The proposed method
is able to track two hands in similar poses while at the same time reconstructing
shape automatically and avoiding collisions.
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In contrast, the proposed approach is able to not only successfully track
challenging hand-hand interactions, but also estimate the 3D hand shape.

other methods . Since the authors of Taylor et al., 2017 did not re-
lease their dataset, the presented method could not directly be compared
with their results. Nevertheless, the proposed method shows accurate
tracking results on similar scenes (Figure 7.10), as well as some settings
that are arguably more challenging than theirs (Figure 7.12).

7.5.4 More Results

This section presents additional results on hand shape adaption as well
as additional qualitative results.

Figure 7.11: The presented 3D hand mod-
els (left) were obtained from fitting the
model to different users with varying hand
shape using the proposed approach. Small
to large hand shapes are shown from top
to bottom. Note that all four hand shapes
on the left are shown in the same pose in
order to allow for a direct comparison.

hand shape adaptation.
Here, the adaptation to user-
specific hand shapes is inves-
tigated. Figure 7.11 shows the
obtained hand shape when run-
ning the proposed method for
four different persons with vary-
ing hand shapes. It can be seen
that the proposed method is
able to adjust the geometry of
the hand model to the users’
hand shapes.

Due to the severe difficulty
in obtaining reliable 3D ground-
truth data and disentangling
shape and pose parameters, di-
rect quantitative evaluation of
the hand shape is not possible.
Instead, the consistency of the
estimated bone lengths on the
sequences of Tzionas et al., 2016

is evaluated in addition. The av-
erage standard deviation is 0.6
mm, which indicates that the
shape estimation is stable over
time.
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Figure 7.12: Qualitative results for the proposed method. Note that the different
colors of the depth image are due to different absolute depth values. The top
two rows depict egocentric viewpoints, whereas the bottom four rows show
3rd-person viewpoints.
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Figure 7.13: Given a depth image (top) as input, CoRN produces accurate
segmentation (middle) and dense correspondences (bottom).
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qualitative results . Figure 7.12 presents qualitative results of
the proposed pose and shape estimation method. The first two rows
show frames for an egocentric viewpoint, where CoRN was also trained
for this setting, whereas the remaining rows show frames for a frontal
viewpoint. It can be seen that in a wide range of complex hand-hand
interactions the proposed method robustly estimates the hand pose and
shape. CoRN is an essential part of the method and is able to accurately
predict segmentation and dense correspondences for a variety of inputs
(see Figure 7.13). However, wrong predictions may lead to errors in the
final tracking result as demonstrated in Figure 7.14.

Depth Final ResultPrediction

Figure 7.14: Erroneous CoRN predictions, e.g., wrongly classified fingers, nega-
tively impact the final tracking result (see Figure 4.9 for the reference coloring).

7.6 limitations and discussion

Although overall compelling results for the estimation of hand pose and
shape in real-time were demonstrated, there are several points that leave
room for further improvements. While the presented approach better
handles complex hand-hand interactions compared to previous real-time
approaches, the method may still struggle in very challenging situations.
For example, this may happen when the user performs extremely fast
hand motions that lead to a severely blurred depth image (see Figure 7.7),
or when one of the hands is mostly occluded.
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temporal coherence . In case of strong occlusions, temporal jit-
ter may occur due to the insufficient information in the depth image.
This could be mitigated by a more involved temporal smoothness term,
e.g., stronger smoothing when occlusions are happening, or a temporal
network architecture for correspondence prediction. Also, the current
temporal smoothness prior may cause a delay in the tracking for large
inter-frame motion.

correspondence matching . To further improve the quality of the
results, in the future one can use more elaborate strategies for finding cor-
respondences, e.g., by using matching methods that are more advanced
than nearest-neighbor search, or by incorporating confidence estimates
in the correspondence predictor.

data generation. Although the data generation scheme for Dense-
Hands (as described in Section 4.4) has proven successful for training
CoRN, some generated images might not be completely realistic. This is
due to the LeapMotion tracker’s limitations and the hence mandatory dis-
tance between the two real hands. In future work, the proposed method
could drive the simulation, and the data could be iteratively refined by
bootstrapping.

detailed hand shape . While the proposed approach is the only
real-time approach that can automatically adjust to user-specific hand
shapes, the obtained hand shapes are not as detailed as high-quality laser
scans. On the one hand, this is because the MANO model (Romero et al.,
2017) is rather coarse with its 778 vertices per hand, and on the other
hand the depth image is generally of lower resolution compared to laser
scans.

hands and objects . One relevant direction for future works is to
deal with two hands that manipulate an object. Particular challenges
are that one additionally needs to separate the object from the hands,
as well as being able to cope with more severe occlusions due to the
object. In addition, estimated hand-object configurations should result in
physically plausible and stable grasps.

physics simulation for model fitting . Another point that is
left for future work is to also integrate a physics simulation step directly
into the tracker, so that at run-time one can immediately take fine-scale
collisions into account. Currently, slight intersections may still happen
due to the computationally efficient but coarse collision proxies.
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computational cost. In terms of computational cost, currently the
setup depends on two high-end GPUs, one for the regression network and
one for the optimizer. In order to achieve a computationally more light-
weight processing pipeline, one could consider lighter neural network
architectures, such as CNNs tailored towards mobile platforms (e.g.
Howard et al., 2017).

7.7 conclusion

This chapter presented a method for real-time pose and shape recon-
struction of two interacting hands. The main features that distinguish the
proposed method from previous two-hand tracking approaches is that it
combines a wide range of favorable properties, namely it is marker-less,
relies on a single depth camera, handles collisions, runs in real time with
a commodity camera, and adjusts to user-specific hand shapes. This is
achieved by combining a neural network for the prediction of correspon-
dences with an energy minimization framework that optimizes for hand
pose and shape parameters. For training the correspondence regression
network, the DenseHands dataset was used. It was created by leveraging
physics-based simulation for generating (annotated) synthetic training
data that contains physically plausible interactions between two hands.
The addition of real depth data, annotated for the segmentation task only,
further improved the performance. Due to a highly efficient GPU-based
implementation of the energy minimization based on a Gauss-Newton
optimizer, the approach is real-time capable. It was experimentally shown
that the approach achieves results that are qualitatively similar and quan-
titatively close to the two-hand tracking solution by Tzionas et al., 2016,
while at the same time being two orders of magnitude faster. Moreover,
it was qualitatively demonstrated that the proposed method can handle
more complex hand-hand interactions compared to recent state-of-the-art
hand trackers.

This chapter and the previous two chapters have focused on developing
state-of-the-art 3D hand motion capture and reconstruction methods that
run in real time and only require a single color or depth camera. The
availability of such methods enables many potential applications, for
example in robotics, activity recognition, or human–computer interaction.
The next chapter will put emphasis on one important application and
present a novel prototype system for the accurate recognition of thumb-
to-finger microgestures.





8
F I N G E R I N P U T

Whereas the previous chapters have presented methods for accurate 3D
hand motion capture and reconstruction in real time, this chapter shifts
the focus towards applications enabled by these methods. In particular,
this chapter introduces FingerInput, an application of a 3D hand tracking
method for fine-grained thumb-to-finger microgesture detection (pub-
lished as Soliman et al., 2018). Please note that the contributions of this
thesis lie in the development of the hand tracking system and the precise
reconstruction of touch points from a single body-mounted depth sensor,
which is described in Section 8.4. It is the first system that accurately
detects the touch points between fingers as well as the finger flexion. For
proper context, additional information about the gesture design space is
included in Section 8.3 but that part of the research is not a contribution
of this thesis.

8.1 introduction

There has been a growing interest in thumb-to-finger gestures, which
take advantage of the inherent fine motor skills of fingers to allow users
to expressively control digital systems (Chan et al., 2016; Chan et al.,
2013; Huang et al., 2016; Lien et al., 2016). By touching one or multiple
fingers with the thumb, the user can perform touch input directly on the
skin. This promises to be a very direct, fast, and discreet type of input,
even more as it supports one-handed and eyes-free interactions. However,
sensing such thumb-to-finger gestures is hard because these gestures
involve small movements and are performed at a body location that is
difficult to instrument.

Pioneering research has demonstrated a variety of gestures and pre-
sented various approaches to sensing (Huang et al., 2016; Weigel et al.,
2017). Considering the recency of the field, it is not surprising that it is
characterized by point explorations, focusing on a specific and rather
small subset of thumb-to-finger gestures. As a result, these recognition
systems are typically developed to demonstrate novel interactions and
therefore limited to specific instances, such as tapping on a finger segment
or sliding along a finger. While viable for the purpose, such restricted
gesture sets limit the scope of possible mappings in real-world applica-
tions. So far, it remained unclear whether the conceptual space of possible

89
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a b  c

Figure 8.1: (a) FingerInput enables detection of versatile thumb-to-finger interac-
tions using a body-worn depth camera. (b) By detecting finger flexion as well as
touch locations, it supports a broad set of microgestures. (c) This is achieved
thanks to a hybrid method that combines a convolutional neural network, a fully
articulated hand model, and continuous collision detection based on geometric
primitives.

gestures has been fully covered, what are common design dimensions,
and—most important from a technical perspective—how the various
gestures can be integrated in one system. This chapter presents a method
which supports the set of thumb-to-finger gestures to a fuller extent and
focuses on expressive, multidimensional thumb-to-finger interaction (see
Figure 8.1). The supported gesture space provides a broader list of micro-
gestures than previous work: the primitives cover existing gestures from
the literature on hand-free microgrestures (Hrabia et al., 2013; Huang
et al., 2016; Tsukadaa and Yasumurab, 2001; Wolf et al., 2011) while also
demonstrating opportunities for novel gestures. The gesture design space
enables to directly derive a set of technical requirements for the proposed
recognition system in order to support a broader set of gestures. It is
the first system that can capture all primitives of the design space and
hence significantly extends the set of gestures that can be detected in
an interactive system, adding to the expressiveness of input. The system
is capable of identifying fingers and finger segments, tracking their 3D
pose, and detecting linear and rotary touch contact between fingers, all
with a high accuracy and in real time. The system uses a body-worn
depth sensor mounted on the user’s head or shoulder. As such, it does
not require any instrumentation of the hand, while not being affected by
bad lighting as only depth information is used. Three pilot studies are
presented to validate the functionality of the algorithm. Results from a
fourth technical evaluation with users show a high accuracy of 91% on
thumb-to-finger gesture recognition, for a rich variety of eight gesture
classes.
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8.2 related work for on-body touch input

For related approaches for 3D hand pose reconstruction, please refer
to Chapter 2. Most importantly, all existing hand tracking approaches
estimate flexion angles for all fingers and some run in real time, however,
no method for precise continuous touch point estimation has been pro-
posed. The remainder of this section discusses related work on detecting
on-body touch input.

Detecting touch input on the body has been approached using dif-
ferent sensing techniques, including acoustic sensing (Harrison et al.,
2010), inertial and magnetic sensing (Chan et al., 2013; Chen et al., 2016;
Hrabia et al., 2013; Huang et al., 2016), photo-reflective sensing (Ogata
et al., 2013), radar (Wang et al., 2016) or capacitive sensing (Weigel et al.,
2015, 2017). However, these approaches have some limitations: capacitive
approaches have relatively low resolution, and the hand needs to be
instrumented. Magnetic approaches have high resolution, but they do
not provide accurate temporal touch detection. All the approaches are
able to detect touch, but do not measure finger flexion for fingers other
than the ones involved in the touch action (Yoon et al., 2014, 2015).

Another widely used approach consists of using a body-mounted
camera. Possible camera locations include the head (Colaço et al., 2013;
Funk et al., 2016; Tamaki et al., 2009), shoulder (Harrison et al., 2011;
Winkler et al., 2014), chest (Chan et al., 2015a; Loclair et al., 2010; Mistry
et al., 2009), and wrist (Dementyev and Paradiso, 2014; Kim et al., 2012;
Prätorius et al., 2014; Sridhar et al., 2017). OmniTouch (Harrison et al.,
2011) uses a depth camera and a projector mounted on the shoulder to
turn the inside of the palm into a touch surface. Sridhar et al., 2017 use a
depth camera mounted on the wrist to enable 3D input on the back of
the hand. PinchWatch (Loclair et al., 2010) allows microinteractions by
mounting a depth camera on the chest, which tracks the hand wearing a
display. These approaches do not require instrumentation of the hand and
generally tend to work robustly for larger touch or free-hand gestures
that are based on the hand shape. However, it is a hard problem to
accurately detect touch contact between fingers from a distant camera.

Finer finger gestures are addressed by Cyclopsring (Chan et al., 2015b)
by mounting a fish-eye camera on a ring, which is used to detect different
touch gestures based on the hand shape. For detecting touch, some
approaches use image based techniques, such as flood filling (Harrison
et al., 2011; Sridhar et al., 2017). While flood filling is suitable for detecting
touch on a constrained touch area like a flat surface (Harrison et al., 2011),
or the back of the hand (Sridhar et al., 2017), it is not suitable for a wider
class of touch interactions on more general and complex surfaces, like
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different finger segments. Even when geometric shapes have been used
for hand tracking (e.g. Qian et al., 2014), none of the prior work used this
approach for detecting touch points.

Extending beyond prior work, the proposed system is able to detect
fine finger-to-finger interaction, involving the continuous rotational angle
and relative position along the touched finger segment and an accurate
detection of touch contact. Moreover, it provides continuous estimation
of the flexion angles of all fingers and exact relative finger positions in 3D.
As explained in the next section, this is sufficient for accurate detection
of thumb-to-finger microgestures.

8.3 design space of thumb-to-finger gestures

This section describes the design space of thumb-to-finger gestures, intro-
duces the example gesture set for the prototype system, and the implied
technical requirements. The contents of this section are not contributions
of this thesis but are rather provided as necessary context information.

8.3.1 Dimensions of Variation

A thumb-to-finger gesture can be defined by four dimensions: À which
finger is touching, Á what location on another finger is touched, Â what
touch action is performed, and Ã how fingers are flexed. The dimensions
and their possible values are illustrated in Figure 8.2.

À Touch Initiator

The first defining factor for microgestures is the finger that triggers the
touch action, that is, either the thumb or one of the remaining fingers.

thumb-to-finger . The vast majority of prior work focused on ges-
tures that are initiated by the thumb, which is touching another finger.
Work investigating such thumb-to-finger input includes Chan et al., 2016;
Chan et al., 2013; Huang et al., 2016; Tsai et al., 2016a, 2017; Weigel et al.,
2017; Whitmire et al., 2017; Zhang et al., 2017a. This space is comparably
well-covered, including systematic empirical studies that investigated the
comfort regions for touch interactions initiated by the thumb (Huang
et al., 2016).

finger-to-thumb . The reverse interaction of a finger initiating a
touch on the thumb has rarely been investigated. In the following, this
is called finger-to-thumb input. This form of input has been implicitly
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Figure 8.2: Thumb-to-finger gestures are defined by four dimensions: (a) The
finger initiating the touch, (b) the touch location, (c) the gesture action, and (d)
finger flexion.
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used to extend the input area of finger sliding gestures (Loclair et al.,
2010) or to enable sliding gestures while holding an object (Wolf et al.,
2011). So far, this form of input has been limited to linear sliding with
the index finger on the thumb. There is the opportunity to extend to a
wider variety of gestures that include tapping, rotational sliding, and use
of other fingers.

A third class, which would include touch contact between any two
fingers other than the thumb, is explicitly excluded as it lays out of the
scope of thumb-and-finger interaction. Such touch contact is particularly
challenging to detect correctly, as the contact is frequent and the involved
areas are not only points but whole surfaces at the time.

Á Touch Location

The touched location is defined by the touched finger segment (proximal,
middle or distal) and the rotary side of the finger (radial, ulnar, dorsal
or volar). A tapping gesture contains only one touch location, while a
continuous gesture contains multiple sequential locations.

finger segment. Each finger can be divided into two segments
(thumb) or three segments (other fingers). Because of the tactile and
visual cues generated by knuckles and wrinkles, each segment is clearly
delimited. This makes them a natural choice as touch targets, as seen
in prior studies (Prätorius et al., 2014; Tsai et al., 2016a; Whitmire et al.,
2017). Some work has subdivided the segments even further (Huang
et al., 2016; Tsai et al., 2017).

finger side . The location of touch input on a finger is also defined by
the rotary angle around the finger’s longitudinal axis. The vast majority
of work has focused on input performed on only one side of the finger:
either the radial side (Tsai et al., 2017; Wang et al., 2016; Yoon et al.,
2015) (i.e., the side closer to the thumb) or the volar (i.e., palmar) side
(Huang et al., 2016; Prätorius et al., 2014; Seo and Cho, 2014). Only very
few studies have investigated input on other sides. Notable exceptions
include work that investigates the likability of touch input on two sides of
the fingers (radial, palmar) (Tsai et al., 2016a). Other work applied tap on
two sides of one segment (Huang et al., 2014) and pioneered sliding input
around the finger segment (Ogata et al., 2012; Tsai et al., 2016b), finger
nail (Kao et al., 2015), or finger wrinkles (Weigel et al., 2017). Overall,
gestures that involve the different rotary sides of the fingers are still
underexplored and present new opportunities for interaction.
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Â Gesture Action

The gesture action defines what form of touch input the user is perform-
ing: either a tap, a continuous longitudinal or rotary sliding movement,
or a specific shape that is drawn with the touch initiator.

tapping . The touch initiator is touching a finger at a discrete location.
The touch locations explored include the different segments and sides of
the fingers (Chan et al., 2013; Gustafson et al., 2013; Huang et al., 2014,
2016; Tsai et al., 2016a,b; Wang et al., 2016; Yoon et al., 2015), as well as
the fingernails (Kao et al., 2015).

sliding along the finger . The touch initiator slides along the
touched finger’s longitudinal axis. The slide can be performed along
the entire finger (Chan et al., 2015b; Gustafson et al., 2013; Loclair et al.,
2010; Whitmire et al., 2017; Wolf et al., 2011; Yoon et al., 2014; Zhang
et al., 2017a), or on a segment of the finger (Chan et al., 2013; Kao et al.,
2015; Seo and Cho, 2014; Tsai et al., 2016b; Weigel et al., 2017). This set
of actions is typically used to manipulate continuous values (Chan et al.,
2015b; Loclair et al., 2010; Whitmire et al., 2017), but it has also been used
for discrete gestures (Seo and Cho, 2014; Tsai et al., 2016b; Weigel et al.,
2017).

sliding around the finger . The touch initiator slides perpen-
dicular to the lateral axis of the touched finger (Chan et al., 2013; Kao
et al., 2015; Ogata et al., 2012; Tsai et al., 2016b; Weigel et al., 2017). The
action can be also be performed on multiple fingers (Chan et al., 2016;
Gustafson et al., 2013; Wolf et al., 2011; Zhang et al., 2017a).

drawing shapes on the fingers . The initiator is used to draw a
shape on one or more fingers. The action is completed once the shape is
fully drawn and the touch contact released. Different shapes have been
investigated, including circles (Loclair et al., 2010), characters (Huang
et al., 2016), and digits (Zhang et al., 2017a). The drawing action can be
performed on a single segment of one finger (Huang et al., 2016; Seo and
Cho, 2014), or on multiple fingers (Chan et al., 2016).

Ã Finger Flexion

The flexion of the different fingers of the hand can be considered as a part
of the performed gesture. This property adds an additional dimension to
the touch gesture performed on the fingers. Each finger can be open, folded
or moving. The terms open and folded are used similarly to Krupka et al.,
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2017 who defined a finger or the thumb as folded when its tip resides
in a certain area in front of the palm. Finger flexion can be a discrete
property. It can also be a continuous feature when one or more fingers
are moving from an open to a folded state or from a folded to an open
state during a gesture. There is only one prior study that included finger
flexion of the touched finger to execute different actions (Yoon et al.,
2015). Combining thumb-to-finger touch with the expressive capabilities
of free-hand gestures (Wang et al., 2016) opens up a promising direction
for novel gestures.

8.3.2 Example Gesture Set

A representative set of demanding microgestures for implementation in
the proposed prototype system is shown in Figure 8.3. This selection
includes discrete tapping as well as continuous movement along and
around fingers, and also circular shapes. It further includes gesturing
at many different finger locations, using the thumb or the index finger
as initiator, and includes finger flexion. Interactions on and with the
pinkie finger were excluded, since the largest part of the pinkie finger
lays outside the comfort region of interaction (Huang et al., 2016).

This set of gestures is considerably more versatile than the thumb-to-
finger microgestures presented in any single prior system. The gesture
set is comprised of the following:

(a) Finger Tap: This set of gestures includes taps on nine segments on
index, middle and ring finger. These gestures, known from prior
work, are quick and easy to perform.

(b) Fist Tap: The hand forms a fist, all fingers being folded, while the
thumb taps on a segment on the outer side of the index finger.

(c) Tap-and-Flap: Tapping based input can also be combined with
dynamic finger poses. The thumb is tapping on the outer side of
one of the index finger segments, while the other fingers move
either from open to folded or vice versa.

(d) Linear Thumb-to-Finger Slide: The thumb is the touch initiator
and performs a linear slide along the index, middle or ring finger.
This set includes sliding on the inner and outer side of each finger,
as well as in both directions, sliding from the root of the finger to
the tip and vice versa, resulting in 12 gestures.

(e) Linear Finger-to-Thumb Slide: A similar sliding gesture can also
be performed by the index or middle finger on the thumb.
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Figure 8.3: The 8 different classes of the evaluation gesture set: (a) finger taps,
(b) fist tap, (c) tap-and-flap, (d) linear thumb-to-finger slides, (e) linear finger-to-
thumb slides, (f) rotational thumb-to-finger slides, (g) fingertip slides, and (h)
drawing a circle.

(f) Rotational Thumb-to-Finger Slide: The thumb is the touch initia-
tor and performs a rotational slide around one of the six inner and
middle finger segments of the index, middle and ring finger while
all fingers are open. Sliding in both directions is included, resulting
in overall 18 gestures.

(g) Fingertip Slide: The thumb can perform a rotational slide around
the fingertip following the curve of the fingernail. This gesture
applies to the index, middle, and ring fingers and can be performed
in both directions.

(h) Draw Circle: The thumb starts from the lower segment of the index
and draws a circle on the fingers.

8.3.3 Resulting Technical Requirements

Accurate detection of the gestural primitives of all four dimensions
poses a set of demanding technical requirements for gesture recognition
systems. The following six main requirements are identified:

1. Hand and finger segmentation

2. Identification of the touch initiator and of the touched finger

3. Estimation of the touch location, including linear (segment) and
rotational (finger side) position

4. Temporal detection of touch contact (touch down vs. touch up), to
identify the onset and offset of a gesture
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5. Estimation of the flexion angles of all fingers

6. Real-time performance.

Based on these requirements, a gesture recognition approach, that is
the main contribution of this thesis to the project, was developed and is
described in the following section.

8.4 gesture recognition approach

This section describes the proposed depth-camera-based gesture recogni-
tion approach for supporting versatile and expressive thumb-to-finger
interactions which constitutes the contribution of the thesis to this project.
The approach works in real time, with a single body-mounted depth sen-
sor, and is able to reconstruct fine-grained thumb-to-finger interactions
with high accuracy without requiring any instrumentation of the hand.
The approach combines the real-time reconstruction of a fully-articulated
hand pose (based on a fully convolutional neural network, a kinematic
skeleton and a Sum of Gaussians model) with real-time detection of
thumb-to-finger touch contact to accurately classify input gestures.

To capture input gestures, the user mounts a depth camera on the
head or either shoulder, as shown in Figure 8.4. This placement follows
strategies from prior work and ensures compatibility with AR/VR de-
vices. For instance, future head-mounted displays will likely include a
forward-facing depth camera. For the proposed prototype, an Intel Re-
alSense SR300 camera (IntelRealSenseSR300, 2016) with a sensing range
of 20 cm to 120 cm is used to capture the depth images.

Figure 8.5 depicts an overview of the proposed algorithm. Figure 8.6
shows examples of different touch poses processed by the algorithm
pipeline. The algorithm consists of four main steps: (1) hand part classi-

a b

Figure 8.4: Thumb-to-finger touch gestures are captured using a depth camera
that can be mounted on (a) the head or (b) the shoulder.
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Figure 8.5: Algorithm processing steps: (a) Input depth image. (b) Per-pixel
hand part labels are obtained using a CNN classifier. (c) The full pose of the
hand is estimated using a coarse generative model. (d) Touch proxies –which
approximate the surface more accurately– are attached to the kinematic skeleton
and used for continuous 3D touch recognition.

fication in the image, (2) 3D hand pose estimation, (3) touch detection,
and (4) gesture classification. The steps are described in more detail in
the following.

8.4.1 Hand Part Classification

A per-pixel classifier is used to segment the hand from the background
and the arm, and to identify different fingers (see Figure 8.5 (b)). The
classifier is a fully convolutional neural network inspired by the U-Net
architecture (Ronneberger et al., 2015). The encoder part transforms the
input depth image at resolution 240× 320 to 256 feature maps of size
15× 20 using 5 convolution layers and 1 max-pooling layer. Afterwards,
the decoder generates a class label image at the original image resolution
with as many channels as number of classes using 4 deconvolution
layers. At each pixel, the softmax function is applied over all channels
to obtain a probability distribution encoding the likelihood of this pixel
belonging to either class. The part label for this pixel is extracted as
the top-scoring class. During training, the CNN tries to minimize the
multinomial logistic loss with information gain matrix. The weights in
the information gain matrix are set according to the class frequencies to
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handle class imbalance. The CNN is trained using the Caffe framework
(Jia et al., 2014). The training is performed for 175,000 iterations with
an input batch size of 16 using the AdaDelta (Zeiler, 2012) solver with
momentum 0.95 and 0.0005. The base learning rate is lowered from 1.0 to
0.1 after 110,000 iterations.

To train the classifier, real annotated training data was collected with
automatic color-based labeling from a body-mounted RGB-D camera at
resolution 480× 640. The data includes 5 participants (3 males, 2 females;
22–27 years old) with the camera mounted at two different locations
(head and shoulder), to provide an egocentric view of the hand for eyes-
free input (see Figure 8.4). To collect ground-truth information, a color
coding was applied to fingers, palm, back-of-the-hand, and arm, using
finger paint, which is not visible in the IR image. This is the only step
that required the color channels (RGB). Per-pixel hand part labels for
the depth image are obtained by HSV color segmentation. For more
information on the data collection, please refer to Section 4.3. In total,
66,662 images were collected and automatically annotated. Of this set,
60,000 images were used for training the classifier. The remaining images
were held out as a test set for classifier evaluation.

8.4.2 Hand Pose and Fingertip Estimation

Recognizing finger-to-finger touch is a harder problem than identifying
touch between a finger and a constrained, planar surface (Harrison et al.,
2011; Sridhar et al., 2017). It requires not only knowledge of fingertip
positions but of the location of all bones in every finger. This full articula-
tion of the hand is commonly described by 26 degrees of freedom (DOF).
For estimating all these DOF, a generative model consisting of a kine-
matic skeleton and a 3D Sum of Gaussians (SoG) model (as introduced
in Sections 3.1 and 3.2) is used. The SoG coarsely models the volumetric
extent of the hand (see Figure 8.5 (c)) and has been successfully employed
for full body as well as hand motion tracking (Sridhar et al., 2015a; Stoll
et al., 2011).

For every input depth image, the hand pose θ is found as the minimizer
of the energy

E(θ) = Edata(θ) + Ecoll(θ) + Elim(θ) + Etemp(θ) (8.1)

that consists of a data term, which describes the discrepancy of the
generative model and the input observation, and several regularizers. Let
{Gm}Nm

m=1, {Gi}Ni
i=1 be the SoG representation of the hand model and the
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input depth image, respectively. The data term is then formulated based
on the 3D Gaussian overlap

Edata(θ) = −
Nm

∑
m=1

Ni

∑
i=1

∆(m, i)
∫

R3
Gm(x;θ) · Gi(x) dx , (8.2)

where only the model Gaussians depend on the hand pose θ and the
overlap is negated since E is minimized. The weight ∆(m, i) for each pair
of Gaussians takes into account the predicted hand part label li obtained
in the previous step and compares it to the pre-defined label lm of the
hand model Gaussian

∆(m, i) =

0 if (lm 6= li) or (dm,i > rmax)

(1− dm,i
rmax

) else
, (8.3)

where dm,i = ‖µm − µi‖2 is the distance of the Gaussians and rmax =

30 cm is the influence radius. The part label li of the input Gaussian i is
obtained by majority vote over the predicted per-pixel labels of the pixels
that are clustered to Gaussian i.

The collision term Ecoll prevents self-intersections by penalizing the
overlap of the hand model SoG with itself as introduced in Chapter 7,
Equation (7.11). Furthermore, limits of joint angles and temporal smooth-
ness are incorporated into the energy to ensure physical plausibility, as
described in Chapter 5, Equations (5.9) and (5.10).

This objective function is fast to optimize and has shown accurate and
temporally stable results (for details see Sridhar et al., 2016). The fingertip
positions and 3D location of every bone in the hand can be read from the
posed kinematic skeleton after optimization, as described in Section 3.1.

8.4.3 Touch Detection

To reliably recognize finger-to-finger touch contact based on the hand
pose, touch proxies are attached to the hand model (see Figure 8.5 (d)).
These approximate the surface more accurately than the isospheres of
the Gaussians. The three segments of each finger are modeled as ellipti-
cal cylinders, the fingertips are modeled as spheres. These proxies are
attached to the bones of the kinematic model so that they can easily
be moved according to the tracked hand pose. Calculating a 3D touch
point p can hence be formulated as sphere/cylinder and sphere/sphere
intersection tests. The touch point p is then transformed to the local
coordinate system (LCS) of the touched segment: ploc = T · p, where
T is the transformation matrix from the global to the local coordinate
system. Note that the LCS of a segment is setup s.t. the y-axis aligns
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Input Depth Classification Hand Pose TouchReference

Figure 8.6: Different touch poses through the system pipeline. Touch position is
indicated by a black circle.

with the bone and the x-z-plane is perpendicular to the bone. Thus, the
exact relative geometric location of the touch point within the segment
can be recovered: (1) the rotational angle around the bone is determined
by the position of the touch point in the x-z-plane of the LCS, i.e. the x-
and z-coordinate of ploc, and (2) the position along the bone is derived
from the y-coordinate of ploc. The use of geometric primitives for touch
recognition is computationally more efficient than other surface represen-
tations (e.g. meshes) while still allowing to model surfaces that are more
complex than a single planar object.

8.4.4 Gesture Classification

The touch information and the estimated hand pose are fed into a con-
tinuous gesture classifier to enable rich user interactions. The ability of
FingerInput to detect exact touch instances provides a straightforward
approach to recognizing gestures using voting-based discriminative clas-
sification in a continuous manner. Since all gestures involve touch contact,
the classifier is activated when a touch instance starts and runs as long
as it is present. The definition of gestures through the dimensions of
the design space presented above allows for representing and defining
gestures as a combination of values of these dimensions. A dictionary
of gestures, defined by the values of the given dimensions, is stored in
the system. For recognition, and on each frame, the values of each of
the four dimensions are observed: touch initiator, touch location, gesture
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action, and finger flexion. A vote is then added to the corresponding
combination of the dimensions, which maps to one of the defined ges-
tures in the dictionary. A time sliding window across frames is then used
to determine the performed gesture through majority voting, where the
gesture with the most votes in the current window is selected. Empirical
results, presented in Section 8.5, demonstrate that the system is able to
detect a versatile set of gestures with a high accuracy.

Note that the proposed gesture recognition system is not restricted to
those gestures, but can be easily trained to detect other gestures that are
based on the dimensions of the design space.

8.4.5 Implementation and Runtime

The prototype system runs at 40 frames per second on a desktop com-
puter, using an Nvidia GTX 1080 GPU. The system recognizes gestures
performed and sends events to clients through a WebSocket connec-
tion. Clients such as smart watches, smart phones, wall displays, or
head-mounted displays can receive this information over a wireless con-
nection.

8.5 system evaluation

The contribution of this chapter is a tracker that accurately detects an
expressive set of thumb-to-finger microgestures. To validate this claim, a
series of pilot studies is conducted first to assess the correct and accurate
functioning of the individual processing steps of the algorithm. The
main evaluation study then investigates the end-to-end functionality of
the approach by assessing the system’s accuracy to detect demanding
microgestures that were performed by users. The findings confirm the
functionality and accuracy of the proposed system.

8.5.1 Pilot Study 1: Finger Classification

The first requirement for gesture detection is the correct segmentation
of regions in the camera image. As described in Section 8.4.1, 66,662

depth images were collected and automatically annotated per-pixel for 6

semantic hand part classes and a non-hand class. 60,000 of these images
were used for classifier training and 6,662 images were held out as test set.
Table 8.1 shows the classification accuracies per class. The proposed CNN
classifier achieves an average accuracy of 90.2%, which shows its ability
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Table 8.1: Per-class accuracies achieved by the proposed classifier for the classes.

Region Palm Thumb Index Middle Ring Pinkie Non-hand

Accuracy 96.0% 93.5% 91.6% 87.3% 79.1% 84.8% 99.0%

to accurately classify different fingers and to detect the exact fingers
involved in a gesture.

8.5.2 Pilot Study 2: 3D Fingertip Localization

To characterize the system’s accuracy in detecting the positions of the
fingertips in 3D space, two participants (1 female, 1 male; 23 and 27

years old) with average hand size (hand lengths: 201 mm, 192 mm; hand
widths: 90 mm, 89 mm) (Poston, 2000) interacted with the system by
performing gestures from the gesture set (see Figure 8.3) as indicated by
a video reference. In total, 3,573 frames were collected and the fingertip
positions were annotated in each frame to serve as ground truth for
evaluation. As a baseline reference, an egocentric tracker that uses a
random decision forest (RDF) (Sridhar et al., 2015a) instead of a CNN
is used. Then the average fingertip localization error is calculated by
computing the Euclidean error of the 5 fingertip positions averaged over
all frames.

The proposed tracking system outperforms the egocentric RDF-based
tracker by a large margin (13.92 mm and 16.37 mm vs. 22.5 mm and
38.0 mm). The results show that the system has the capability to localize
fingertips of different fingers with an error less than the average finger
segment size. Note that the average error of the egocentric RDF-based
tracker is higher than the error achieved by the corresponding third-
person tracker proposed by Sridhar et al., 2015a on common third-person
datasets. This seems to indicate that egocentric sequences are more
challenging than third-person settings due to frequent self-occlusion of
the hand and additional camera motion.

8.5.3 Pilot Study 3: Touch Contact Between Fingers

To measure touch accuracy, a second dataset is used to compare the
tracker output with ground-truth data acquired via self-capacitive touch
sensing. Capacitive touch is very accurate as it does not confuse finger
touch down events with finger hover state and it is unaffected by occlu-
sions. To capture capacitive ground-truth data, a custom-built very thin
and flexible sensor was used that participants wore on the thumb during
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this pilot study (see Figure 8.7). Two participants (1 female, 1 male; 23

and 27 years old) performed the same gestures as in Pilot Study 2. This
dataset (5,174 frames) was automatically annotated with ground-truth
information.

Figure 8.7: Automatic ground-truth an-
notation of thumb-to-finger touch us-
ing a capacitive finger glove, built out
of nitrile rubber with conductive fabric
affixed around the tip of the finger.

The accuracy is calculated using
a frame-by-frame comparison as
well as a time window comparison.
For the frame-by-frame compari-
son, the number of frames where a
touch is detected both by the sys-
tem and in the ground truth data
is calculated, yielding an average
accuracy of 87.5%. Most of the mis-
classified frames lie either directly
before or after a performed touch
gesture. These one-frame errors can
be addressed with a time window:
at a window length of 500 ms, the
system has an average accuracy of
95.8%. Lengths of 600 and 700 ms result in 96.2% and 97.1%, respectively.

8.5.4 Main Evaluation Study: Gesture Detection Accuracy

Figure 8.8: Confusion matrix for the 8 dif-
ferent classes of the gesture set: (1) finger
taps, (2) fist tap, (3) tap-and-flap, (4) linear
thumb-to-finger slides, (5) linear finger-to-
thumb slides, (6) rotational thumb-to-finger
slides, (7) fingertip slides, and (8) drawing a
circle. The proposed system has a classifica-
tion accuracy of 91.06%.

To formally evaluate the ac-
curacy of end-to-end gesture
recognition, a user study was
performed. 10 volunteers were
recruited (6 males, 4 females,
19–29 years old). Their hand
lengths varied from 155–212

mm, and the hand widths from
74–92 mm (mean dimensions
were 180 mm by 86 mm), pro-
viding a representative sample
of hand size distribution (Pos-
ton, 2000). The task consisted
of performing all gestures in
the 8 gesture classes presented
in Figure 8.3, with 4 trials each.
Per gesture, two trials were
performed while sitting, and
the two others in a standing
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position. For each trial, participants started with an open-hand pose with
no touching fingers, and then performed the touch gesture shown on a
screen. Participants were instructed on how to perform the gestures, and
were given several minutes to practice the gestures until they were com-
fortable with them. Gestures were recorded with an Intel RealSense SR300

depth camera, mounted on the participant’s shoulder using a shoulder
mount. Each recording session lasted ≈1 hour, with a break after per-
forming 25 gestures. The proposed classifier evaluated the performed
gestures for each frame.

The overall accuracy of the system for gesture classification was 91.06%.
The confusion matrix is shown in Figure 8.8. As the results reveal, the
fist tap and the circle drawing has the highest accuracy of 91.8%. This
validates the ability of the proposed system to avoid false activations of
primary actions. Linear thumb-to-finger slides have the lowest accuracy
of 89.9%. Rotational slides are at times confused with finger taps, as they
both occur inside one segment.

8.6 discussion and limitations

selected gesture set. The presented gesture set is a selected subset
from the possibilities present in the design space. These gestures were
chosen to highlight the flexibility of the tracker with an heterogeneous
gesture set, yet they are in no way exhaustive. Given that the tracker ac-
curately recognizes the hand pose and touch points, other microgestures
could be easily supported; a notable example of this would be to take into
consideration the hand position and orientation, which are computed as
part of the tracking process.

occlusions . The results from the evaluation show that FingerInput
achieves thumb-to-finger gesture classification with low false positives
and can detect the fingertip location and classify fingers accurately. How-
ever, since the technique is based on an optical approach, it is limited
by line-of-sight requirements: some occlusions resulting from crossed
fingers, overly bent fingers, or rotated hands can be problematic for ges-
ture classification. For this reason, the current setup assumes the user is
holding the hand in a relaxed pose in front of the chest.

hand model . The current version of the system requires that the
measurements of the hand are manually indicated once for each user.
Future implementations will include an initialization step.
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misclassification. It was empirically found that tap gestures can
be misclassified as rotational slides when the user is slightly moving the
finger while tapping. While this demonstrates the high spatial resolution
of rotational slide, which even detects minimal movement, it may result in
an undesired command. A straightforward solution consists of increasing
the threshold for a minimal sliding movement. The trade-off between
spatial resolution of rotational slides and robust detection of finger taps is
an important question that should be further investigated in future work.
An alternative design solution consists of spatial multiplexing: Drawing
from the many different finger locations supported by the proposed
system, the designer can reserve some segments or finger sides for tap
gestures, while others are used for sliding input.

mobility. The current prototype uses a desktop computer. The mobil-
ity could be extended by connecting the depth camera to a body-worn
microcontroller (e.g., Raspberry Pi), and streaming depth data to a server
for gesture classification.

8.7 conclusion

This chapter presented FingerInput, a system for versatile thumb-to-finger
touch gestures, based on a 3D hand pose estimation method using a depth
sensor. The main contribution of this thesis to the project was the gesture
recognition approach (Section 8.4), whereas the exploration of the gesture
design space (Section 8.3) was provided for better context. The gesture
recognition approach covers the dimensions of the design space, and
recognizes discrete and continuous thumb-to-finger touch gestures. The
results demonstrate that it is possible to implement a gesture recognition
system that considerably extends the types of gestures that are supported
in a single interface. The example applications showed that thumb-to-
finger gestures are rich and versatile and offer strong support for direct
and single-handed interaction.
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C O N C L U S I O N

This thesis explored various challenging directions to push the state of
the art in real-time 3D hand reconstruction and tracking from a single
camera.

All presented methods largely profited from the proposed novel datasets
that were created in a smart way, combining different techniques to gen-
erate data for new and often harder tasks (Chapter 4). The first method
dropped the assumption of observing a single isolated hand in free
air, which has been common in related work (Chapter 5). The proposed
dataset SynthHands, which was created using a novel merged reality setup,
enabled training of a two-stage neural network regressor for sparse key-
points. In combination with a kinematic skeleton fitting step, the method
achieved robustness to strong occlusions caused by arbitrary objects and
in cluttered environments. Next, the sensor assumption was relaxed to
a monocular RGB camera while still aiming at a full reconstruction in
global 3D space (Chapter 6). To accomplish generalization from synthetic
RGB training data to real RGB test sequences, it was crucial to enhance
the training data using a novel geometrically consistent GAN, yielding
the GANerated Hands dataset. The last method tackled simultaneous pose
and shape reconstruction of two strongly interacting hands from a single
depth sensor (Chapter 7). Instead of predicting sparse keypoint locations,
a neural network was trained to regress dense correspondences between
the input image and the hand model surface, enabled by the new Dense-
Hands dataset. These correspondences were subsequently used to fit the
hand models in a generative optimization-based framework.

In addition, this thesis also presented a hand and gesture tracker
enabling the application of 3D hand tracking for recognition of thumb-
to-finger microgestures for human–computer interaction (Chapter 8).

9.1 insights

Besides the individual contributions of each chapter, there are several
broader insights that arise from the thesis as a whole.

the importance of data . All presented methods for 3D hand mo-
tion capture and reconstruction introduced their own dataset to achieve
the respective goal, namely SynthHands (Section 4.1, used in Chapter 5),

109
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GANerated Hands (Section 4.2, used in Chapter 6), and DenseHands (Sec-
tion 4.4, used in Chapter 7). The creation of SynthHands and DenseHands
demonstrated how to leverage existing methods in a smart way to obtain
automatically annotated data for a more challenging scenario. For the
first one, the merged reality capture only required tracking of a single
hand in free air to generate realistic interactions with virtual objects. For
the second one, the two hands of a user were tracked separately at a
safety distance while the live physical simulation framework enabled
creation of natural two-hand interactions. The GANerated Hands dataset
showed how to use machine learning techniques to transform existing
data for a new task while ensuring annotation consistency without re-
quiring paired examples. These datasets proposed in this thesis were a
crucial advantage over related work in order to tackle underexplored or
new challenges in 3D hand tracking.

handling the domain gap. The datasets used for the presented
methods were mostly based on synthetic data. To enable generalization
to real test sequences, two different strategies emerged in this thesis.
First, the domain gap can be reduced by adding real data either in
augmentation or annotated for a subset of the tasks. The SynthHands
dataset consists of rendered hands, however, the object textures and RGB-
D backgrounds for augmentation were real data. Depth images can be
automatically annotated for the hand segmentation task by coloring the
hands. Adding this real depth data to the synthetic DenseHands dataset
for segmentation and correspondence regression, significantly increased
the generalizability as shown in this thesis. If no real data can be added,
the second strategy for reducing the domain gap is to use image-to-image
translation techniques to make the data distributions and image features
more similar. Generative adversarial networks can be trained to enhance
synthetic images such that they mimic real images better. As shown for
the GANerated Hands dataset, this can be done with unpaired examples
while ensuring valid annotation transfer with a geometric consistency
loss. To easily generate large annotated training corpora, the methods
proposed in this thesis based their training data generation on synthetic
data. For the successful application to real test cases, it was key to explore
ways to reduce the domain gap.

combining machine learning and model fitting . Whereas
many of the more recent related methods have solely focused on using
machine learning techniques, especially neural networks, for hand re-
construction, the approaches proposed in this thesis combine machine
learning components with optimization-based model fitting in novel
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ways. The proposed new combinations of these two paradigms usually
achieve results that are better than any of the two components applied
separately. In the first two presented methods, the kinematic skeleton
fitting step combines the 2D and 3D predictions by jointly fitting to both,
leading to a full 3D result with improved reprojection error in the input
image. Furthermore, imposing bio-mechanical constraints and temporal
regularization is straightforward in the optimization of the model fitting
step without the need for a temporal neural network architecture. In
the two-hand reconstruction method, the commonly used closest point
correspondences were replaced with regressed correspondences from a
neural network. Therefore, the model fitting step became independent of
the initialization and exhibits improved accuracy as demonstrated exper-
imentally. In addition, the task for the neural network can be formulated
as 2D image-to-image translation hence not requiring capacity for explicit
lifting to the 3D space.

In conclusion, this thesis has shown that efficient and innovative strate-
gies to combine machine learning and optimization-based model fitting
bring many advantages. On one hand, availability of model knowledge
or a separate model fitting step means that simpler machine learning
methods are often sufficient or that they do not need to learn everything
from scratch. On the other hand, guidance from machine learning tech-
niques significantly improves the robustness and accuracy of conventional
optimization-based model fitting algorithms.

9.2 outlook

This thesis significantly advanced the state of the art in real-time 3D
hand reconstruction and tracking from a single RGB or depth camera.
Nevertheless, there are still many open directions for future work. In the
following, some of them are presented in more detail.

two hands and objects . While this thesis tackled 3D reconstruc-
tion of a single strongly occluded hand and two hands interacting with
each other, it did not consider simultaneous reconstruction of the hands
and the objects that they are interacting with. However, this is an impor-
tant setting for various applications, for example in robotics. The inherent
segmentation problem is harder, there are more occlusions, and the di-
mensionality of the optimization problem for model fitting significantly
increases, especially in the case of non-rigidly deforming objects. An
advantage of simulatenous reconstruction is that mutual constraints like
touch points and interaction forces can be exploited. Hence, exploration
and integration of real-time physical simulation techniques could be
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an avenue for future work. A method for reconstructing two hands in
interaction with an object should ideally work with arbitrary unknown
objects. Thus, building a model of the object while tracking it in 3D is
a promising approach. Requirements for operation in real time and a
single camera setup make these future directions even more challenging.

appearance model and more detailed geometry. Methods
that rely on scanned per-user hand meshes (e.g., from a 3D laser scanner)
cannot be employed by everyday users. Instead, having parametric hand
models (Khamis et al., 2015; Romero et al., 2017; Tkach et al., 2017) is
desirable because they enable adaptation to unseen users by optimizing
in a comparably low-dimensional parameter space. The MANO model
(Romero et al., 2017) was the first publicly available parametric model for
hand pose and shape, and future models will improve over it in many
ways. First, there is not yet any parametric hand appearance model,
which is crucial for many applications such as personalized avatars
in AR/VR. In addition, model estimates could be directly compared
to an RGB input image, both as a loss in a neural network as well
as in a generative model fitting framework. This enables simultaneous
appearance reconstruction and could potentially increase the accuracy
of the pose and shape estimates. The complexity of such an appearance
model is variable and could for example also include pose-dependent
appearance changes or sophisticated material models.

A second direction for improving parametric hand models is to aim for
representing more fine-grained geometry. In general, estimating the hand
shape of the user more accurately translates to a more accurate 3D pose
tracking result. The mesh of the MANO model is comparably coarse, it
consists of 778 vertices for a single hand. In order to achieve a high-quality
reconstruction that includes fine-grained geometry details, such as pose-
dependent wrinkles, a higher mesh resolution is necessary. A prerequisite
for building such a high-resolution model is the availability of high-
quality 3D hand scan data. Once built, such a high-quality model could
even be fitted to low-resolution or noisy data (e.g., from a commodity
depth sensor). Overfitting to the noise could be easily prevented by
regularization in the low-dimensional parametric space hence yielding
plausible fine-grained geometry details from low-quality data.
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N E U R A L N E T W O R K D E TA I L S

This appendix provides network architecture and training details for the
various neural networks used throughout the thesis.

a.1 geocongan (chapter 4)

This section provides details of the GeoConGAN network (Chapter 4).

a.1.1 Network Design

The architecture of GeoConGAN is based on the CycleGAN (Zhu et al.,
2017), i.e., two conditional generator and two discriminator networks
are trained for synthetic and real images, respectively. Recently, also
methods using only one generator and discriminator for enrichment of
synthetic images from unpaired data have been proposed. Shrivastava
et al., 2017 and Liu et al., 2019 both employ an L1 loss between the
conditional synthetic input and the generated output (in addition to the
common discriminator loss) due to the lack of image pairs. This loss
forces the generated image to be similar to the synthetic image in all
aspects, i.e., it might hinder the generator in producing realistic outputs
if the synthetic data is not already close. Instead, the proposed network
uses the combination of cycle-consistency and geometric consistency loss
to enable the generator networks to move farther from the synthetic
data thus approaching the distribution of real world data more closely
while preserving the pose of the hand. The GeoConGAN contains ResNet
generator and Least Squares PatchGAN discriminator networks.

a.1.2 Training Details

The GeoConGAN is trained in Tensorflow (Abadi et al., 2016) for 20,000

iterations with a batch size of 8. The Adam optimizer (Kingma and
Ba, 2014) is initialized with a learning rate of 0.0002, β1 = 0.5, and
β2 = 0.999.
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a.2 halnet and jornet (chapter 5)

This section explains the network architecture used for HALNet and
JORNet and provides training details. Furthermore, the experiments
which lead to the specific design decisions are presented.

a.2.1 Network Design

The ResNet architecture (He et al., 2016) has been successfully used
for full body pose estimation in previous work (Mehta et al., 2017a).
While ResNet50 offers a good trade-off between speed and accuracy,
hand motion is fast and exhibits rapid directional changes. Further,
the egocentric camera placement leads to even faster relative motion
in the scene. Therefore, experiments were performed based on recent
investigations into the nature of representations learned by ResNets (Greff
et al., 2016) to get a faster architecture without significantly affecting the
accuracy.

core architecture . Starting from ResNet50, a residual block is
removed from level 3, and only 4 residual blocks are kept at level 4.
Level 5 is replaced with two 3× 3 convolution layers with 512 (conv4e)
and 256 (conv4f) features and no striding. Both of these layers also use
batch normalization (Ioffe and Szegedy, 2015). From conv4f, A 3 × 3
convolutional stub followed by bilinear upsampling produces the joint
location heatmaps, and a fully-connected layer with 200 nodes followed
by another fully-connected layer predict the joint location vector. See
Figure A.1 for details.

The resulting architecture needs 10 ms for a forward pass at resolution
320 x 240 (HALNet) and 6 ms at resolution 128 x 128 (JORNET) on a
Nvidia Pascal Titan X GPU. This is a significant speed-up compared
to the ResNet50 version which needs 18 ms and 11 ms, respectively.
Evaluation on the SynthHands test set shows that the drop in accuracy is
only marginal. ResNet50 trained on the hand localization task achieves
2.1 px average error whereas HALNet achieves 2.2 px.

intermediate supervision. For HALNet and JORNet, a subset of
the feature maps at each of res3a, res4a and conv4e in the networks is
treated as the predicted heatmaps, for intermediate supervision (Lee et
al., 2015). For JORNet, the feature maps at the aforementioned stages are
additionally used to predict joint positions for intermediate supervision
(see Figure A.1).
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Figure A.1: The proposed network architecture for HALNet and JORNet.
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Figure A.2: Training JORNet to regress
heatmaps and local joint positions for all
joints instead of only for fingertips and
the wrist (JORNet light) reduces the error
for fingertips and wrist on the Synth-
Hands test set.

auxiliary task in halnet.
Predicting heatmaps for all joints
as auxiliary task helps HALNet to
learn the structure of the hand.
This leads to a better performance
compared to a version only trained
to regress the root heatmap. On
the SynthHands test set, regressing
heatmaps for all joints instead of
only for the root improves the 2D
pixel error by 6.4% (from 2.35 px
to 2.2 px).

regressing all joints in jor-
net. Although fingertips and
wrist location alone provide a
strong constraint for the pose
of the hand, training JORNet to
regress the heatmaps and local 3D positions for all joints improves the
accuracy. Figure A.2 shows the average error for the wrist and all finger-
tips in 3D on the SynthHands test set. The full JORNet version yields a
significant increase in performance compared to JORNet light which was
only trained for wrist and fingertips.

a.2.2 Training Details

The proposed network are trained within the Caffe (Jia et al., 2014)
framework, using the AdaDelta scheme (Zeiler, 2012) with momentum
set to 0.9 and weight decay to 0.005. Both networks are trained with an
input batch size of 16. HALNet uses a base learning rate of 0.05 and is
trained for 45k iterations. The input has a spatial resolution of 320x240

px, and the output heatmaps have a resolution of 40x30 px. The main
heatmap loss has a loss weight of 1.0, and all intermediate heatmap losses
have loss weights of 0.5. For JORNet, the input has a spatial resolution
of 128x128 px. The base learning rate is 0.05, with main heatmap loss
weight set at 1.0 and joint position loss weight at 2500. The intermediate
heatmap losses have their loss weights set to 0.5 and intermediate joint
position loss weights set to 1250. After 45k iterations, the base learning
rate is lowered to 0.01, the intermediate heatmap loss weights lowered to
0.1 and the intermediate joint position loss weights lowered to 250, and
trained for a further 15k iterations.
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a.3 regnet (chapter 6)

This section provides details of the RegNet network (Chapter 6). A for-
ward pass of RegNet in takes 13 ms on a GTX 1080 Ti.

a.3.1 Projection Layer ProjLayer

Recent work in 3D body pose estimation has integrated projection lay-
ers to leverage 2D-only annotated data for training 3D pose prediction
(Brau and Jiang, 2016). Since GANerated Hands training dataset provides
perfect 3D ground truth, the proposed projection layer merely acts as
refinement module to link the 2D and 3D predictions. The intermediate
relative 3D joint position prediction are projected using orthographic
projection where the origin of the 3D predictions (the middle MCP joint)
projects onto the center of the rendered heatmap. Hence, the rendered
heatmaps are also relative and not necessarily in pixel-correspondence
with the ground truth 2D heatmaps. Therefore, the rendered heatmaps
are further processed before feeding them back into the main network
branch. Note that the rendered heatmaps are differentiable with respect
to the 3D predictions which makes backpropagation of gradients through
the ProjLayer possible.

a.3.2 Training Details

The RegNet is trained in the Caffe (Jia et al., 2014) framework for 300,000

iterations with a batch size of 32. The AdaDelta (Zeiler, 2012) solver
is used with an initial learning rate of 0.1 which is lowered to 0.01
after 150,000 iterations. All layers which are shared between RegNet
and ResNet50 are initialized with the weights obtained from ImageNet
pretraining (Russakovsky et al., 2015). Both, the 2D heatmap loss and the
local 3D joint position loss, are formulated using the Euclidean loss with
loss weights of 1 and 100, respectively.

a.4 corn (chapter 7)

This section provides training details of the correspondence regression
network CoRN (Chapter 7).
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a.4.1 Training Details

CoRN was trained in Tensorflow using the Adam (Kingma and Ba,
2014) optimizer with the default parameter settings. The training ran
for 450,000 iterations using a batch size of 8, where synthetic and real
images were sampled with 50% probability each. With a training time
of approximately 20 seconds for 100 iterations, the total training process
took 25 hours on an Nvidia Tesla V100 GPU.

a.4.2 Input Data Processing

The depth values are scaled to meters and the mean value of all valid
depth pixels is subtracted. Furthermore, the following image augmenta-
tions are applied to the training data, where all augmentation parameters
are sampled from a uniform random distribution:

• rotation augmentation with rotation angle ∈ [−90, 90] degrees,

• translation augmentation in the image plane with offset ∈ [−0.25,
0.25] · image size, as well as

• scale augmentation with possibly changing aspect ratio in the range
of [1.0, 2.0].

Note that all these augmentations are applied on-the-fly while training,
i.e., the sampled augmentations for a training sample differ for each
epoch, effectively increasing the training set size. In addition to these
on-the-fly augmentations, all images are also mirrored (and the respective
procedure is applied to the annotations), which however is performed
offline.



B
G P U - B A S E D G AU S S - N E W T O N O P T I M I Z E R

In Chapter 7, an efficient GPU-based Gauss Newton optimizer was used
to reconstruct two interacting hands in real time. This appendix provides
additional details about the implementation of the optimizer that is used
to minimize the nonlinear least-squares energy function.

For the Gauss-Newton optimization steps, the non-constant entries
of the Jacobian matrix J ∈ R8871×122 and the residuals f ∈ R8871 are
computed using CUDA kernels on the GPU. The structure is setup to
ensure that all threads in the same block compute derivatives for the same
energy term. Subsequently, the matrix-matrix and matrix-vector products
J> J and J> f are computed using an efficient implementation in shared
memory. For solving the linear system J> J · δ = J> f , J> J ∈ R122×122 and
J> f ∈ R122 are copied to the CPU and the preconditioned conjugate
gradient (PCG) solver of the Eigen library is employed to obtain the
parameter update δ.
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